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Abstract. We generalize the construction of the ordinary Sierpiński triangle
to obtain a two-parameter family of triangles we call Sierpiński pedal trian-
gles. These triangles are obtained from a given triangle by recursively delet-
ing the associated pedal triangles in a manner analogous to the construction
of the ordinary Sierpiński triangle. We study the fractal dimension of these
Sierpiński pedal triangles and related area ratios. We also provide some com-
puter generated graphs of the fractals.

1. Preliminaries

Let T0 be a triangle with inner angles A0, B0, and C0. The pedal triangle
of T0, denoted by T1, is the triangle obtained by joining the feet of the three
altitudes of T0. Denote the inner angles of T1 byA1, B1, and C1. If T0 is an acute
triangle, then T1 is inscribed inside T0. If T0 is an obtuse triangle, then two of
the vertices of T1 will fall on extensions of sides outside of T0. If T0 is a right
triangle, then T1 degenerates to a line segment. These cases are illustrated in
Figure 1.

It is well known that when T0 is not a right triangle, then the original triangle
T0 is similar to�A0B1C1,�A1B0C1, and�A1B1C0. We briefly outline the proof
here since we are going to use this result to verify some important formulas
later. We consider acute triangles only, since the same argument works for
the obtuse triangles as well. From Figure 1(a) we see that to show �A0B1C1 is
similar to T0, it suffices to verify that ∠B0 = ∠A0B1C1. Let E be the point of
intersection of the three altitudes of T0 (called the orthocenter ), then it is easy
to see that ∠B0 is the same as ∠A0EC1, and the latter equals ∠A0B1C1 because
the quadrilateral A0C1EB1 can be inscribed in a circle in which ∠A0EC1 and
∠A0B1C1 subtend the same arc. A similar argument applies to the similarity
between T0 and the other two triangles.

From the above similarity results, one can derive the angle and side formulas
for T1 in terms of the angles and sides of T0 as in [Hob97, KS88]. These formulas
play a key role in [HZ01] where sequences of pedal triangles are studied in
detail. They are also essential in this paper. From the self-similarity property
in the construction of pedal triangles, as illustrated in Figure 2, the following
angle formulas can be verified immediately. If T0 is acute, then

A1 = π − 2A0, B1 = π − 2B0, C1 = π − 2C0;(1a)

a1 = a0 cosA0, b1 = b0 cosB0, c1 = c0 cosC0.(1b)
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Figure 1. Pedal Triangle Construction
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Figure 2. Self-Similarity Property of Pedal Triangles

where a0, b0, c0, and a1, b1, c1 are the sides of T0 and T1 respectively.
If T0 is obtuse with, say, π > A0 > π/2, thenfix illustration

A1 = 2A0 −π, B1 = 2B0, C1 = 2C0;

a1 = −a0 cosA0, b1 = b0 cosB0, c1 = c0 cosC0.

For an acute triangle �A0B0C0, regarding the sides of its pedal triangle
�A1B1C1 as three light beams and thinking of the sides of �A0B0C0 as three
mirrors, the similarity between �A0B0C0 and each of the three smaller trian-
gles surrounding the pedal triangle �A1B1C1 illustrates the optical property
that the angle of incidence equals the angle of reflection. Since nature always
takes the most economical way, this physical interpretation of pedal triangle
also implies an interesting geometric extreme property of pedal triangle called
Fagnano’s Problem.

Theorem 1.1. [Cox89, p. 20] [CG67, p. 88] For a given acute triangle �A0B0C0,
the pedal triangle�A1B1C1 has the shortest perimeter among all triangles that
are inscribed in �A0B0C0.

The main purpose of this article is to look at pedal triangles from a different
perspective, however. In the next section, we generalize the traditional con-
struction of the Sierpiński triangle to a construction that uses pedal triangles.

figure1.eps
figure3.eps
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Figure 3. Sierpiński Triangle, 10 iterations

We call these objects Sierpiński Pedal Triangles (SPT). In section 3, we compute
the area ratios for these SPTs. And in section 4, we show how the fractal di-
mension of SPT depends on the initial triangle. Section 5 discusses the SPTs
from an iterated function system perspective. And in section 6 we discuss the
dynamics of the sequence of pedal triangles.

2. Sierpiński Pedal Triangle

To begin, we recall the construction of the Sierpiński triangle. Let S0 be an
equilateral triangle (or any other triangle). Joining the middle points on the
three sides of S0 results a second triangle T0 which is similar to S0. We call
it the middle triangle of S0. Let S1 = S0\IntT0, i.e., remove the interior of the
middle triangle T0 from S0. Then S1 is a union of three smaller triangles each of
which is similar to S0. From each of these smaller triangles, remove the interior
of the middle triangle again, and denote the resulting union of nine equilateral
triangles by S2, S2 ⊂ S1. Continuing this procedure to define S3 ⊃ S4 ⊃ S5 · · · ,
one obtains the well-known Sierpiński Triangle (ST) by taking the intersection
of the nested sequence (see Figure 3).

ST =
∞⋂
n=0

Sn.

The Sierpiński triangle can be viewed as one possible generalization of the
Cantor set to two-dimensions. Other generalizations are possible. For example,
the original triangle S0 does not have to be equilateral. It can be any triangle, mention these are equivalent

via an isometryas long as one joins the middle points from each side to form a middle triangle,

sierpinski.eps
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Figure 4. SPT constructed from (55◦-60◦-65◦)-triangle, 12 iterations

and removes its interior from the previous triangle. The result will always be
three smaller triangles that are similar to their parental triangle. Continuing
this process will produce a self-similar fractal. It is natural to ask if theseIntroduce fractals better

STs are the only self-similar fractal obtained by removing inscribed triangles?
That is, for a given triangle T , can one remove a triangle whose vertices are
on the sides of T and have the resulting three smaller triangles all similar to
T? Well, as we saw in the previous section, the pedal triangle of T is such
a triangle. Furthermore, it is the only such triangle other than the ordinary
middle triangle. Therefore, it also generates a self-similar fractal, and we call
it a Sierpiński pedal triangle (SPT). Figure 4 is an example.improve wording

If the initial triangle T is equilateral, then the feet of the three altitudes of
T coincide with the middle points of the three sides of T , hence the resulting
SPT is the same as ST. In this regard, one may view SPT as a generalization of
ST.

In the construction of ST, one needs only three contraction maps with the
same contraction ratio 1/2. The procedure then iterates to produce ST. In the
construction of a SPT, however, one needs not only three contractions maps of
(possibly) different contraction ratios, but also reflections. More importantly,
the contraction ratios depend upon the shape of the initial parental triangle.

In the remainder of this paper, we examine some fundamental properties of
SPT in comparison to ST and see to what extent SPT is a true generalization of
ST.

Remark 2.1.

(i) ST and SPT are the only self-similar inscribed triangular fractals. Be-
cause the pedal triangle of an obtuse triangle is not inscribed “inside”
the parental triangle, from now on, we will be concerned with only acute

55-60-65.eps
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Figure 5. Comparison of ST and SPT Constructions

triangles. Let �ABC be any acute triangle and �A1B1C1 any inscribed
triangle which divides the former into three smaller triangles as shown
in Figure 5. If �AB1C1 is similar to �ABC, then either ∠B = ∠AC1B1

and ∠C = ∠AB1C1, or ∠B = ∠AB1C1 and ∠C = ∠AC1B1. The first case
can happen only when �A1B1C1 is the middle triangle of �ABC, and
the second case occurs only for the pedal triangle.

(ii) ST and SPT are not affine equivalent. It is clear that when the initial
triangle is not equilateral, SPT and ST are not affine equivalent since
an affine transformation must preserve the ratio of the line segments
on each side of the triangle. Moreover, SPT involves the altitudes, but
orthogonality is not an affine invariant. From Figure 5 we can see that
for a right triangle, its pedal triangle degenerates to a line segment
while the ST is still non-degenerate.

3. The Area Ratio of A Pedal Triangle

One of the important ways to distinguish two different fractals is to compare
their fractal dimensions. Before we consider the fractal dimension of SPT, let
us look at the area ratio of a pedal triangle �A1B1C1 with its parental triangle
�ABC, and provide some additional results from the classical geometry of tri-
angles. For the ST case, it is easy to see that the area ratio is always 1/4 because
the contraction ratio is 1/2. Then the fractal dimension of ST is easily calcu-
lated to be ln 3/ ln 2. On the other hand, for the SPT case, a direct calculation
from formulas 1a and 1b shows that

Area�A1B1C1

Area�ABC
= cosA cosB sin(π − 2C)

sinC
= −2 cosA cosB cos(A+ B),

where 0 < A,B < π/2 and π/2 < A+ B < π .
If we are concerned with only acute triangles, we may introduce the following

index domain, I = {(x,y) | 0 < x < π/2, 0 < y < π/2, π/2 < x + y}. In
Figure 6, the index domain I is the interior of the center shaded triangle M0.
The interiors of the three trianglesM1,M2, andM3 surroundingM0 represent all
possible obtuse triangles. The boundaries betweenM0 and the Mi’s, i = 1,2,3,
represent all right triangles. For each (x,y) ∈ I, set z = π − (x + y). Then
the ordered triple of real numbers (x,y, z) represents an acute triangle in the
Euclidean plane with inner angles x, y and z.

We will need the following definition.

figure6.eps
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Figure 6. The Index Domain

Definition 3.1. A function f : I �→ R (n > 1) is called Schur-convex if for every
doubly stochastic matrix S,

(2) f (Sx) ≤ f (x)
for all x ∈ I. It is called strictly Schur-convex if the inequality is strict and Schur-
concave (respectively, strictly Schur-concave) if the inequality (2) is reversed.

Next we will show that there is a two-parameter family of Sierpiński pedal
triangles that can be indexed by points in I. Their area ratio is a Schur-concave
function on I and their Hausdorff dimension can be described as a function on
I as well. To this end, for (x,y) ∈ I, define

f (x,y) = −2 cosx · cosy · cos(x +y).
It is clear that f is symmetric and differentiable on I. Moreover

fx = 2 sinx cosy cos(x +y)+ 2 cosx cosy sin(x +y),
fy = 2 cosx siny cos(x + y)+ 2 cosx cosy sin(x + y),

so
fx − fy = 2 cos(x +y) · sin(x −y).

Therefore, for any (x,y) ∈ I with x ≠ y we always have(
fx − fy

)
· (x −y) = 2[cos(x +y) sin(x −y)] · (x − y) < 0

because cos(x + y) < 0 and [sin(x − y)] · (x − y) > 0 on I. But
(
fx − fy

)
·

(x − y) < 0 for all x 
= y is equivalent to f being a strict Schur-concave
function on I. From the special properties of Schur-concave functions (see
[MO79, RV73, Zha98]), if f (x,y) has maximum in I, it can occur only in the
subset of I where x = y . That is, f (x,y) attains its maximum only along the

index.eps


SIERPIŃSKI PEDAL TRIANGLES 7

x

0

-0.5

0

f

0

y

π/6

π/3
π/2

π/3
π/6π/2 0

Figure 7. Area Ratios for Sierpiński Triangles

intersection of I with the main diagonal of the xy-plane. This can also be seen
by directly setting fx = 0 and fy = 0 and solving the system simultaneously. added by RH

Now, consider f along the line x = y . It reduces to

f (x) = −2 cos2 x cos 2x = 2 cos2 x − 4 cos4 x.

It is a simple calculation in calculus to find that f has only one critical point
x0 = π/3, and f attains the maximum there.

We define an order “≺” on I as follows.

Definition 3.2. We say (x1, y1) ≺ (x2, y2) if and only if there is a p, 0 < p < 1,
such that [

x2

y2

]
=
[

p 1− p
1− p p

][
x1

y1

]
.

That is, (x2, y2) can be obtained from (x1, y1) via multiplication by a 2× 2
doubly stochastic matrix. Equivalently, (x2, y2) lies in the interior of the line
segment between (x1, y1) and (y1, x1).

We can summarize the above arguments with the following theorem.

Theorem A. Every similarity class of acute triangles can be represented by a
point (x,y) in the index domain I. Furthermore,

(i) f (π3 ,
π
3 ) = 1

4 is the maximum;
(ii) f (x,y)→ 0 as (x,y)→ ∂M0;

(iii) f (x1, y1) < f(x2, y2) if (x1, y1) ≺ (x2, y2).

So given any acute triangle, the area ratio of its pedal triangle with the orig-
inal triangle depends on the shape of the parental triangle. The closer the
parental triangle is to being equilateral, the larger the area ratio. This is illus-
trated in Figure 7, which was generated with Mathematica.

arearatio3.eps
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4. Fractal dimension of SPT

In general, the computation of the fractal dimension of a set can be very
complex and difficult. But for a self-similar fractal set, its fractal dimension
can be calculated by the following useful formula [Bar89, Har89],

n∑
i=1

rDi = 1,

where n is the number of the self-similar pieces reproduced in each step in the
construction of a fractal, and the ri’s are the contraction ratios (or magnifica-
tion factors) for i = 1,2, · · · , n and D is its fractal dimension.

For the case of ST, n = 3, r1 = r2 = r3 = 1/2, and the above equation eas-
ily implies that D = ln 3/ ln 2. This is perhaps the simplest and most useful
formula to find the Hausdorff dimensions of self-similar fractal sets with con-
stant contraction ratios. However, for the SPT case, r1, r2 and r3 are different,
in general. Solving that algebraic equation for D as a function of r1, r2 and r3

is not a simple task.
Again, let �ABC be an acute triangle and �A1B1C1 its pedal triangle. From

formula (1b) we see that the three contraction ratios of the smaller triangles
are r1 = cosA, r2 = cosB, and r3 = cosC. Therefore, the fractal dimension D
of SPT associated with �ABC is determined by

(3) cosD A+ cosD B + cosD C = 1.

In particular, the fractal dimension of SPT depends on the initial triangle.

Example 4.1.

(i) If A = B = C = π/3, �ABC is an equilateral triangle, and the SPT is
the same as the ST. So D = ln 3/ ln 2 ≈ 1.58496.

(ii) A = π/3, B = π/4, and C = 5π/12, we have(
1
2

)D
+
(√

2
2

)D
+
(

cos
5π
12

)D
= 1.

Solving this numerically yields D ≈ 1.63343.
(iii) A = π/2, B = π/2− C, a right triangle, then equation 3 becomes

0D + cosD B + sinD B = 1

which implies D = 2.

Let D(x,y) denote the fractal dimension of the SPT generated by an acute
triangle represented by a point (x,y) in the index domain I. We have

Theorem B. D(x,y) attains an absolute minimum value of ln 3
ln 2 on the index

domain I at the point (π/3, π/3).

Proof. First we will show that D(x,y) has a relative minimum at (π/3, π/3).
Rewriting equation 3 as

cosD x + cosD y + cosD(z) = 1

where z = π − x −y and differentiating implicitly, we obtain[
cosD x · ln(cosx)+ cosD y · ln(cosy)+ cosD z · ln(cosz)

]
·Dx =

cosD x ·D · tanx − cosD z ·D · tanz, and
(4)
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cosD x · ln(cosx)+ cosD y · ln(cosy)+ cosD z · ln(cosz)

]
·Dy =

cosD y ·D · tany − cosD z ·D · tanz.
(5)

Since the coefficients of Dx and Dy in the above equations can never be zero
for (x,y) ∈ I, we have Dx = Dy = 0 if and only if

cosD x ·D · tanx − cosD z ·D · tanz = 0, and

cosD y ·D · tany − cosD z ·D · tanz = 0.

An easy check shows that Dx(π/3, π/3) = Dy(π/3, π/3) = 0, i.e., (π/3, π/3)
is a critical point of D(x,y) inside the index domain I. We can find the second
order partial derivatives of D via implicit differentiation on equations 4 and
5. Through a lengthy but direct calculation, we find that at the point (x,y) =
(π/3, π/3),∣∣∣∣∣ Dxx Dxy

Dyx Dyy

∣∣∣∣∣ =
∣∣∣∣∣ 2(log2 3− 4/3) log2 3− 4/3

log2 3− 4/3 2(log2 3− 4/3)

∣∣∣∣∣
(

ln 3
(ln 2)2

)2

=

3
(

log2 3− 4
3

)2 [ ln 3
(ln 2)2

]2

> 0.

This shows that (π/3, π/3) is a relative minimum of D on I.
To see that (π/3, π/3) is the absolute minimum on I, we will show it is the

only critical point on I. To do this, assume that (a, b) is a critical point on I
with Dx(a,b) = 0 = Dy(a,b). Then equations 4 and 5 imply cosD a · tana =
cosD b · tanb. Then (

cosa
cosb

)D
= tanb

tana
.

Solving for D, and assuming x 
= y , gives

D(a,b) =
ln
(

tanb
tana

)
ln
(

cosa
cosb

) .
Next, we note that D(x,y) possesses a six-fold symmetry over I. This is

seen by the fact that the fractal dimension of a triangle with angles (x,y,π −
x−y) can be computed on I using any two of the three angles in either order:
D(x,y) = D(y,x) = D(x,π −x −y) = D(π −x −y,x) = D(y,π −x−y) =
D(π − x − y,y).

STILL NEEDS WORK
This completes the proof of Theorem B. �

Let (x,y) be a point in the index domain I and let D(x,y) be the fractal
dimension of SPT generated by the triangle with inner angles x, y , and π −
(x +y). We have the following two conjectures.

Theorem C. With notation as above,

ln 3
ln 2

≤ D(x,y) < 2.

Conjecture D. With notation as above, D(x1, y1) ≤ D(x2, y2) if (x2, y2) ≺
(x1, y1) for any (x1, y1), (x2, y2) ∈ I.
Remark 4.2.
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Figure 8. The Dimension, D(x,y), of SPT on I

(i) Theorem C follows immediately from Theorem B since D(π/3, π/3) is
a global minimum.

(ii) Conjecture D claims that D(x,y) is a Schur-convex function on I. The
function D(x,y) is illustrated in Figure 8.

(iii) Conjecture D is supported by the data shown in Figure 8, which was
generated with Mathematica. That is, the more a triangle (x,y) devi-
ates from the equilateral triangle (π3 ,

π
3 ), the bigger its fractal dimen-

sion D(x,y). Some specific calculations are contained in Table 1.

Triangle D(x,y)
(25◦,75◦,80◦) 1.875
(35◦,65◦,80◦) 1.6875
(45◦,60◦,75◦) 1.6337
(50◦,60◦,70◦) 1.6208
(55◦,60◦,65◦) 1.611237
(60◦,60◦,60◦) 1.584796

Table 1: Triangles And The Fractal Dimensions Of Their SPT

Figures 9, 10, 11, 12, 4, and 3 illustrate the Sierpiński pedal triangles
corresponding, respectively, to the entries in the table. Entry six in
the table is the Sierpiński triangle already shown in Figure 3. These
images were produced with Mathematica using a modification of code
for producing Sierpiński triangles found in [Wag00].

(iv) If the initial triangle �ABC is obtuse, then it generates a self-similar
fractal SPT with overlaps. One may still talk about its fractal dimen-
sion, but more detailed discussion about Hausdorff measure theory is
required. Interested readers may refer to [Mat95].

In summary, we may view SPT as a natural generalization of ST, and represent
SPT as a two-parameter family of fractal sets constructed from triangles.

Moreover, for the roles played by ST in different circumstances such as in

dimension.eps
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Figure 9. 25◦-75◦-80◦ Triangle, 50 Iterations

Figure 10. 35◦-65◦-80◦ Triangle, 30 Iterations

Figure 11. 45◦-60◦-75◦ Triangle, 20 Iterations

25-75-80.eps
35-65-80.eps
45-60-75.eps
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Figure 12. 50◦-60◦-70◦ Triangle, 15 Iterations

chaos games and in IFS [Bar89, Man82, Ste95], we hope that SPT can be intro-
duced naturally into different areas of studies as a generalization of ST.

5. Iterated Function Systems

Insert explanation for Figure 13. The dots are small for printing. You may
need to zoom in to view them on a screen

6. Sequences of Pedal Triangles

Another interesting property of pedal triangles is that they can form naturalthis repeats the introduction

sequences in which the shapes change chaotically. Let T0 be a triangle with
inner angles A0, B0, and C0. Construct a second triangle T1 with inner angles
A1, B1, and C1 whose vertices are the feet of the three altitudes of T0. Construct
a third triangle T2 with inner angles A2, B2, and C2 whose vertices are the feet
of the three altitudes of T1. Construct a triangle T3 from T2 in the same way,
and so on. One obtains a sequence of triangles {Tn}∞n=0 where Tn+1 is the pedal
triangle of Tn. It is called the sequence of pedal triangles generated by T0. See
Figure 14.

While the size of these pedal triangles gets smaller rapidly, an interestingreference?

question is: “what can we say about the change of their shapes?" This prob-
lem and questions involving limiting shape of different sequences of plane
triangles have been studied since at least a century ago [Hob97]. In the late
1980’s, Kingston and Synge revisited the sequence of pedal triangles prob-
lem [KS88]. They discovered many interesting properties of such sequences
and also fixed some errors that occurred in the earlier literature. Soon af-
ter their work, a number of articles made nice connections between the se-
quence of pedal triangles and symbolic dynamic systems and ergodic theory
[Ale93, Hob97, Lax90, MO79, Ung90]. It seems that many fundamental concepts

50-60-70.eps
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Figure 13. SPT 45◦-55◦-80◦ Triangle using IFS
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Figure 14. A Sequence of Pedal Triangles

and phenomenon in the study of dynamic systems can be found in sequence
of pedal triangles. Alexander pointed out that one could use the special prop-
erties of these pedal triangles as an elementary and expository introduction to
the power and the beauty of symbolic dynamic systems [Ale93]. Additionally,
the well-established theory of symbolic dynamic systems, ergodic theory, frac-
tal geometry, and computer graphics will no doubt provide powerful new tools

ifs.eps
pedalsequence.eps
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for many classical geometry problems that have proven difficult to tackle using
the classical synthetic methods.

In [DHZ03, HZ01], we investigated some interesting dynamic systems prob-
lems in classical geometry. Different sequences of triangles always provided
important and inspiring examples. In particular, the chaotic behavior of the
sequence of pedal triangles motivate people to further explore the possible in-
trinsic connections between classical geometry problems and some advanced
mathematical theories. It is interesting to note that when a dynamic system
proved to be chaotic, fractal appears in one way or another although the two
subjects are completely independent from each other. Most textbooks of dy-
namic systems treat fractals as the strange attractors, but fractals occur every-
where.

To conclude this article, we would like to pose: Is the fractal dimension of
a Sierpiński pedal triangle generated by a given triangle T0 related to chaotic
property of the sequence of pedal triangles generated by T0?
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