Monthly Problem

L. Richard Hitt and Chad Versiga
University of South Alabama

February 14, 2007
11007. Proposed by Western Maryland College Problems Group, Westminster, MY. Let 〈 \rangle denote Eulerian numbers, and let $\}$ denote Stirling numbers of the second kind. Show that

$$
\sum_{j=1}^{n} 2^{j-1}\left\langle\begin{array}{l}
n \tag{1}\\
j
\end{array}\right\rangle=\sum_{j=1}^{n} j!\left\{\begin{array}{l}
n \\
j
\end{array}\right\} .
$$

Solution: Let \mathbb{N}_{k} denote the set of the first k positive integers. Then each term in the summation on the right-hand-side of (1) counts the number of onto functions $f: \mathbb{N}_{n} \rightarrow \mathbb{N}_{j}$. This follows because the Stirling number of the second kind, $\left\{\begin{array}{c}n \\ j\end{array}\right\}$, counts the number of unordered partitions of a set of cardinality n into j non-empty classes. So $j!\left\{\begin{array}{c}n \\ j\end{array}\right\}$ gives the number of such ordered partitions, which is the same as the number of onto functions $f: \mathbb{N}_{n} \rightarrow \mathbb{N}_{j}$.

In order to establish the identity, we need a connection between the number of onto functions and the Eulerian numbers. This is given in the following identity which appears in [1] using a different notation where its proof is left as an exercise.

Lemma 1.

$$
j!\left\{\begin{array}{l}
n \tag{2}\\
j
\end{array}\right\}=\sum_{k=0}^{n-1}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\binom{ k}{n-j} .
$$

Proof (of lemma). Since the left-hand side of (2) counts the number of onto functions from $\mathbb{N}_{n} \rightarrow \mathbb{N}_{\mathrm{j}}$, we show the right-hand side counts these functions as well.

So let $f: \mathbb{N}_{n} \rightarrow \mathbb{N}_{j}$ be onto. Then f can be represented as an n-tuple of integers ($a_{1}, a_{2}, \ldots, a_{n}$) where $1 \leq a_{i} \leq j$ for each i and where $\left\{a_{i} \mid 1 \leq i \leq j\right\}=\mathbb{N}_{j}$ (since f is onto). Now rearrange the permutation so all the elements of $\mathfrak{f}^{-1}(1)$ occur first and in increasing order, then the elements of $\mathfrak{f}^{-1}(2)$ occur next arranged in increasing order, etc., to obtain $\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{n}}\right)$. Then $\left(i_{1}, i_{2}, \ldots, \mathfrak{i}_{n}\right)$ is a permutation on \mathbb{N}_{n} with $\mathfrak{j}-1$ or fewer descents (where a descent occurs when one number in a permutation is less that its predecessor).

Now, given any n-permutation with $\mathfrak{j}-1$ or fewer descents, we use the descents as barriers to induce a partition on the n numbers. We add $j-1-k$ additional barriers, where k is the number of descents, to construct an onto function $f: \mathbb{N}_{n} \rightarrow \mathbb{N}_{j}$. This can be done by choosing where the $\mathfrak{j}-1-k$ barriers go from
the $n-1-k$ available positions. This can be done in $\binom{n-1-k}{j-1-k}=\binom{n-1-k}{n-j}$ ways. Summing over all possible k gives the number of onto functions.

$$
\sum_{k=0}^{n-1}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\binom{ n-1-k}{n-j}=\sum_{k=0}^{n-1}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\binom{ k}{n-j}
$$

An example will serve to illustrate this counting method. A similar example is found in [2]. If we are counting the number of onto functions $f: \mathbb{N}_{9} \rightarrow \mathbb{N}_{6}$ and consider the permutation on \mathbb{N}_{9} given by 135274698, how many onto functions does this permutation correspond to with this counting method? If we write the permutation showing the descents, we get $135 \downarrow 27 \downarrow 469 \downarrow 8$. To define an onto function to \mathbb{N}_{6}, we must insert 2 additional barriers between adjacent numbers to create a total of 5 barriers to produce a partition into 6 ordered classes. Considering the available locations for additional barriers (denoted by \sqcup), $1 \sqcup 3 \sqcup 5 \downarrow 2 \sqcup 7 \downarrow 4 \sqcup 6 \sqcup 9 \downarrow 8$, we must choose 2 of the 5 without regard to order in any of $\binom{5}{2}$ ways.

Using the lemma, we have

$$
\begin{aligned}
\sum_{j=1}^{n} \mathfrak{j}!\left\{\begin{array}{l}
n \\
j
\end{array}\right\} & =\sum_{j=1}^{n} \sum_{k=0}^{n-1}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\binom{ k}{n-j} \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\binom{ k-1}{n-j} \\
& =\sum_{k=1}^{n} \sum_{j=1}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\binom{ k-1}{n-j} \\
& =\sum_{k=1}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle \sum_{j=1}^{n}\binom{k-1}{n-j} \\
& =\sum_{k=1}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle 2^{k-1} .
\end{aligned}
$$

References

[1] R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics, Second Edition, Addison-Wesley, Reading, MA, 1994.
[2] Donald E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, Second Edition, 1998, Addison-Wesley.

