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INTRODUCTION AND PRELIMINARIES

Introduction
Knot cobordism is an equivalence relation on the set

of n-knots under which the set of equivalence classes
forms an abelian group using the connected sum operation.
The general idea in studying handle presentations of knot
cobordisms is to see which geometric conclusions can be

made concerning two cobordant knots; if assumptions are
made about the handle presentation of a cobordism between

them. Conversely, geometric assumptions can be made about
a pair of cobordant knots, and the implications of these
assumptions concerning the handle structure of a corbordism
between the knots can be investigated.

Handle theory has been studied extensively over the
past two decades. A handle presentation is a compact way

of presenting geometric information in the same way that a

group presentation conveys algebraic information. Moreover,
the cores of the handles are lower in dimension than the
surrounding space, and are therefore easier to deal with.
The main idea in this work is that information about knots
can be obtained by examining handle presentations of
cobordisms which they bound.

In Chapter I, classical ribbon knots are discussed,~and

1



//X

Z-.

[T

2

the concept of ribbon knots is generalized to higher
dimensions following Yanagawa [MO,M1,u2] and Roseman [28].
The accuracy of the definition is checked by showing that
known characterizations of classical ribbon knots generalize
to higher dimensions in a natural way. Ribbon knots form
an important part of this study of knot cobordisms, because

they are knots which are cobordant to the unknot via the
simplest cobordisms. Many of the applications we have of
the more general theory will be to ribbon knots.

The relationship between ribbon knots and cobordisms

to the unknot begins to surface in Chapter II. A construc-
tive method is given there for determining the handle
structure for the exterior of a cobordism, given information
about how the submanifold is embedded. Examples which
illustrate the technique are also given.

Chapter III begins a development of a handle theory for
manifold pairs. Allowable "handle moves" are reviewed and

developed.
Applications of the handle moves are given in Chapter Di

Other applications of results in this work are given, in-
cluding examples of higher dimensional slice knots which

are not ribbon knots, and an unknotting theorem for ribbon
knots.

The dissertation is organized by chapters,divided into
sections. Important statements (such as theorems, lemmas,_

equations, etc.) are numbered by the chapter (Roman) numeral
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followed by the ordinal number of the section in the chapter,
followed by the ordinal number of the statement in the
section. If a reference is to a statement within the same

chapter, the chapter numeral is omitted. Figures are
numbered beginning with each chapter. A reference to a

figure in another chapter includes the chapter numeral as
well as the figure number. Otherwise, the reference in—

cludes only the figure number.
The remainder of this section is devoted to establish-

ing notation, definitions, and a few facts. Reference to
these will be tacitly assumed whenever needed.

otation
The category of smooth manifolds and smooth maps is

used, unless otherwise stated. There will be occasion to
use(WJcomplexes,as well as the piecewise linear category.
All manifolds will be oriented, and all maps between mani-
folds will be orientation preserving (we will not always
remind the reader of this).

The symbol D? will be used to denote the standard
n-disk of radius r in whichever category is under discussion:

2 2 2{(xl,...,xn) | xl+...+xn s r } in the smooth
Dn ~ categoryr {(xl,...,xn) I max{xl,...,xn} sr} nggtgggrgh

l .
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Dn will be used to denote the unit n-disk, D2. Other sym-

bols which will be used frequently include:
I the unit interval [O,l];
Mn a manifold of dimension n;
int(M) or M the interior of M;

BM the boundary of M;~

cl(A) the closure of the set A;

sn 8Dn+l;
= homotopy equivalence;
Q an isomorphism in the category under

discussion (diffeomorphism, PL homeo-

phism, group isomorphism, etc.);
Z the ring of integers;
Hn(X;R) the n-dimensional homology R-module of

X with coefficients in the ring R; if
no ring is specified, the ring is Z;

# connected sum-

Definitionsi 
An n-knot K = (Sn+2,fSn) is a smooth, oriented,

(n+2,n)-sphere pair, i.e., fSn is a smooth submanifold of
Sn+2, and f is a homeomorphism from Sn to the submanifold.
The term "knot" will also be used to refer to the submani-

n+2 n n+2 nfold. Two n-knots, K1 = (S ,flS ) and K2 = (S ,f2S ),
are of the same type, or are equivalent, if there is an

orientation preserving diffeomorphism h:Sn+2——+Sn+2 such
\
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that hofl = f2 and such that hlf is also orientation pre-l
serving. If an n-knot is of the same type as the standard
sphere pair (Sn+2,Sn), the knot is called the unknot, and

the sphere pair is said to be unknotted. Also, a disk pair
is said to be unknotted if it is homeomorphic to the stand-

n

ard pairr The study of knots originated with l-knots, so

these knots will be referred to as classical knots. The

numerical notation used in this work for the classical
knots is that of Reidemeister (see EH3 or Q71). '

An n-link L = Klu...uKm of mQc0mp0nents.iszidisjoint
union of m oriented and smoothly embedded n-spheres,
Kl,...,Km, in Sn+2. Two n—links, L and L’, are of the same

type rfthere is an orientation preserving diffeomorphism
r=sn+3—-+sn+2 such that for each 1, f(Ki) = Ki‘ and r|Kl
is orientation preserving. An n-link L is trivial if there
are m disjoint smoothly embedded (n+1)-disks, BP...,Bm, such

that 8Bi=Ki for each i.
An attempt to attach a group structure to the set of

n-knots can be made using the connected sum operation;
however, inverse elements fail to exist, so an abelian
semi—group is all that results. To obtain a group structure,
the set of n-knots can be partitioned into equivalence
classes using the equivalence relation of knot cobordism.
The set of equivalence classes then forms a group under
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the connected sum operation.
A cobordism is a triple of manifolds, (W,MO,Ml), such

that 8W = MO u Ml. (MXI, MXO, Mxl) is the trival
cobordism, or product cobordism. Two n-knots, (Sn+2,flSn)
and (Sn+2,f2Sn),are cobordant if there is a smooth oriented
submanifold w of Sn+2XI, with aw = (rlsnxo) U (-f2SnXl)
where w is homeomorphic to SnXI and where-43 istheembaing
obtained from f2:Sn——+Sn+2 by reversing the orientations
on both Sn and Sn+2. The pair (Sn+2XI, w) is called a

knot cobordism. An n-knot is null-eobordant, or slice.
if it is cobordant to the unknot.

For a knot K = (Sn+2,fSn), the complement of K,

Sn+2-fSn, is an invariant of the knot type. As the comple-
ment is not compact, it is usually more convenient to study
a deformation retract of the complement which is compact.

This is called the exterior of the knot, and we define the
term in a more general setting.

Let (Mm,Nn) be a smooth pair, and let v(N) denote a

tubular neighborhood of N in M (see Milnor E). The

exterior of N in M is then defined as cl(M-v(M)). we will
refer to exteriors of knots, disk pairs, and knot cobordisms
throughout Chapters II, III, and IV.

The following facts will be used without reference:
1) For a knot (sn+2,rs"), v(fSn) E SnxD2 where the

diifeomorphism takes Sn to fSn (in other words, it is a

"bundle"isomorphism). See Massey [19], for a proof.
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2) For a disk pair (Dn+3,gDn+l), v(gDn+l) 5 Dn+lXD2

where the diffeomorphism takes Dn+l to gDn+l. This follows
since Dn+1 is contractible.

3) Knot exteriors are homology circles.

Proof: We will show that knot complements are homology
circles.‘ Let (Sn+2,fSn) be an n-knot. From the long exact
sequence of the pair (Sn+2,Sn+2-fSn)

, n+2 n+2 n+2 n n+2 n n+2... —+Hé+lkS )—~+Hq+l(S ,S -fS )——>H@(S -fS )——+Hq(S )-—+,..
+ 1'1,we conclude that Hq(Sn 2-fS ) = O for l<<q <rHlr since

Hq+l(Sn+2,Sn+2¢fSn) E Hn‘q+1(sn) by Alexander duality. Ala;

Z Z/P“.
. m m
1 2 2 +2 +2O——+Hn+2(Sn+ -fSn)——+Hn+2(Sn+ )——+Hn+2(Sn ,sn -rsn)——+

n+2 n - n+2Hn+l(S -fS )——+Hn+l(S ) - O

shows that Hq(Sn+2-fSn) = 0 for q = n+1, n+2 and

U Z » O
H M Qlexander Duality) H

H2(Sn+2) H2(Sn+2’Sn+2_fSn) Hl(Sn+2_fsn) Hl(Sn+2)

~ ~ lshows that H1(Sn+2,fSn) = Z. So H*(Sn+2-fSn;Z) = H*(S ;Z%

The Universal Coefficient Theorem then shows that for any

ring R, H*(Sn+2éfSn;R) 3 H*(Sl;R).D



/&__

/’~\

/-‘~\

8

N) Disc pair exteriorsennzhomology circles.

Proof: Let (Dn+3,gDn+l) be a disk pair, and _

W = cl(Dn+3- (gDn+l)) where v(gDn+l) is a tubular neigh-
borhood of gDn+l in Dn+3. The proof is then immediate
from the Mayer-Vietoris sequence

' ~ +3 3* ~ +1 ~ ~ +1 ~ +3...—+hq+l(Dn )-+Hq(Wnv(gDn ))—+Hq(W)oHq(v(gDn »—+Hq(Dn )—»-

IIZ |Q -IIZ

0 q(Dn+1xsl) q(w)oHq(Dn+1xD2) 0

A I112 ll 2

X l\IlH S H W .Dq() q()

5) Exteriors of knot cobordisms are homology circles.

Proof: Let (Sn+2xI,Wn+l) be a cobordism of n—knots, and

Y the closed complement of a tubular neighborhood of wn+l
in Sn+2XI. Also, let YO denote the 0-level of Y, and D

the cone over YO.' Then D u Y is a disk pair complement.
The Mayer-Vietoris sequence

...——+Hq(YO)-—+Hq(D)$Hq(Y)——+Hq(DuY)-—+...

shows that Y is a homology S1, since YO, D, and DuY are.D
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I. RIBBON KNOTS

§l. Introduction and Definitions

In this chapter, the classical idea of ribbon knots is
discussed and generalized to higher dimensional knots, fol-
lowing Yanagawa Um] and Roseman E$]. The suitability of the
generalized definition is verified by showing that the known

characterizations of ribbon knots generalize to give charac-
terizations in the higher dimensions as well. This process

,\ is culminated in Theorem III.3.3.
Ribbon knots arise naturally in a study of handle decom-

positions of knot cobordisms, as they are all cobordant to
the unknot via a cobordism with a very nice handle decomposi-

tion (see §III.3). The techniques and results developed in
this chapter will be used repeatedly in succeeding chapters.

Ribbon knots were first introduced by Fox [5] in 1962

for the case of classical knots. To translate his topologi-
cal definition to the smooth category, we need some prelimi-
nary definitions. A smooth map f:Mm—+Nn (msn) is called
an immersion if the rank of the Jacobian of f is m everywhere

A 2-disk which is immersed in s3 is called a singular 2-disk,
and is called a ribbon if all the singularities are of the

’”. type shown in Figure 1, where the immersion identifies the

9
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arcs A'B' and A"B" with AB. The boundary of a ribbon is
defined to be the image of the boundary of the 2-disk under
the immersion. And finally, a knot is a ribbon knot if it
is the boundary of a ribbon. Figure 2 shows the stevedore's
knot, 61, and the ribbon it bounds.

A1

U I A11TlIH€I'SlOnL-> B

BY

Figure 1

 Li???
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/“* In 196M, Yajima E defined the concept symmetric ribbon

knot for knots of S2 in SH. Five years later, Yanagawa EH3

presented a definition for ribbon 2-knots, and gave several
characterizations, including the equivalence of his defini-
tion with Yajima's.

In l97H, Roseman E gave two definitions of ribbon n-
knots, both of which restrict to the classical definition
when n=l, and the second of which agrees with Yanagawa's

definition when n=2. The two definitions are:

Definition l: An n-knot is a ribbon n-knot if it bounds an i -

immersed '(n+l)-disk f:Dn+1—+Sn+2, the singular set of
which is a disjoint union \J{Pi,Qillsisk}, where Pi§Qi is

/~ a compact connected n-manifold with non-empty boundary,
PicDn+lis proper U e.,8Pi=Pin8Dn+l) and Qi C int(Dn+1)
for each i, and f(P.) = f(O.) if and only if i=j.

1 ‘J

Definition 2: Same as above, except that for each i, we

require Pi¥Qi?Dn.
For n=l, both of these definitions coincide with Fox's.

Conjecture: For n22, there are knots which satisfy Defini-
tion 1, but not Definition 2.

In Chapter IV, we will show that there are higher dimen-

siona1.slice1umots which do not satisfy Definition 2 (e.g.,
the 2-twist-spun trefoil). We would conjecture that the

2-twist-spun trefoil does satisfy Definition 1. 4



/f\

r/\

./\~

12

From here on, Definition 2 will be used as the defini-
tion for ribbon n-knot. This is the more satisfactory
definition, since the known characterizations of ribbon l-
knots can be generalized to ribbon n-knots under this
definition. This process is begun in the next section.
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§2. Fusions of Links

Let A, Cl, C2,..., Cm be disjoint, unlinked, unknotted
circles in S3. Also, let al,..., am be disjoint arcs on A,

and ci an arc on Ci for lsism. For each i, connect ai with
oi by a band Bi in ¢1[s3-(Auclu;..ucmuBlu...UBi_l)], i.e.,
by a set Bi§DlXDl such that 8DlXDl corresponds to aiuci.

C
Q30

C.
Q0

C

C
Q0

\/

The set k = (Auclu...ucmuaBlu...uaBm)-(élu..
is then a ribbon knot in S3 (we will always assume that the
"corners" are rounded i11these types of constructions so that
the resulting manifolds are smooth). Figure 3 shows the
square knot presented in this form. In fact, Yajima B8]

has shown that every ribbon l—knot can be constructed in the
above fashion, obtaining a characterization of ribbon
1-knots. V

This characterization is generalized to ribbon 2-knots
by Yanagawa EH2. In this section, the generalization is
completed to ribbon n-knots.

B2

C c*' C1 1 2/ B1 \
3.’/,/ 2 4”’////

4/
A al"'

FIGURE 3
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The idea of banding circles together is generalized in
the following

Definition: Let K = Klu...uKm c sn+2 be an n-link with
m components (mzl). If K‘ is obtained from K by piping
(see B, page 67) two distinct components of K together
along an arc a with piping tube N, we say that K’ is ob-
tained from K by a simple fusion along N. Note that such

a K’ has m-l components. After m-l simple fusions are per-
formed on K, the result is an n-knot, which we say is a

fusion of the link K.

Note: The term "fusion" is used differently in-each of
Hosakawa [8], Yanagawa U, and Suzuki [36L

Theorem 2.1: An n—kn0t is a ribbon n-knot if and only if it
is a fusion of a trivial n-link (nzl). "

Proof: Let f:Dn+l—+Sn+2 be a ribbon immersion with singu-
lar set u{PiuQi|lsisk} where aPi = PinBDn+l. Let
Nl,...,Nk be disjoint tubular neighborhoods of Pl,...,Pk,
respectively, in Dn+l. Then the Ni's are (n+1)-disks, and

8[cl(Dn+1—Nlu...uNk)] consists of k+l n-spheres, say

Si,...,Sk+l. We can choose diffeomorphisms ¢i:DlXDn—+Ni
nsuch that ¢i(QXD ) Pi and such that Nin(Slu...uSk+l)

¢i(3DlXDn). Then each Ni is a pipe between two of the Si's
along the arc ¢i(DlXO).

Now, by construction, f(Sl),...,f(Sk+l) forms a
/>\ . . . ~ I'1+]_ , , -trivial n-link, and f(8D ) is a fusion of this trivial
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N1 kw h
N3 P3 ®

Figure H

link along the pipes f(Ni), lsisk (see Figure U).
Conversely, suppose a knot is a fusion of the trivial

”‘ n—link sl,...,sk+1 along the (n+1)-disks N1,...,Nk in

/-\

sn+2. Let Bl,...,Bk+1 be disjoint (n+1)-disks such that
BB1 = Si for lsisk+l (see Figure 5).

Without loss of generality, we may assume that any

intersection of the form BinNj is an n—disk. To see

this, first let fi:IXDn—+Ni be a diffeomorphism such
n .that fi(8IXD ) - Ni(SiJ--lJSk+l) (see Figure 6). Then

perform an ambient isotopy so that the sets fj(IX0) are
transverse to the Bi's at each point of intersection. Now

suppose x e fj(IXO)nBi. Then there is an 8>O such that
fj(IXD2)Bi is an n-disk, by transversality at x. Replace
the pipe DJ by fj(IXD2). After doing this for each point
of intersection, the result is a ribbon immersed disk,
the boundary of which is equivalent to the original knot-
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Figure 5 g

:1 ki IT! 1 I 
 T’

_ Figure 6



A\r

17

§3. Handle Decompositions ofSeifert Manifolds of Ribbon Knots

We now turn to the problem of characterizing ribbon n-
knots in terms of their Seifert manifolds. A Seifert
manifold for (sn+2,rsn) is an orientable manifold
Vn+lcSn+2 such that 3V=fSn. By Levine DB], Seifert mani-
folds always exist. In this section, we study the handle
structure of such Seifert manifolds.

Let M be an m-manifold with boundary, and h an m-disk
such that Wnhc8W, and suppose there is a diffeomorphism
f:DpXDq -h such that f(8DpXDq)=Wnh, where p+q=m. Then

h is a handle of index p (a p-handle) attached to M. The

/- symbol hp will often be used to denote a p-handle. The

notation Muhpuhq means (Wuhp)uhq, i.e., the handle hq is
attached to the manifold Wuhp.

Note that Muhp is a smooth m-manifold (after round-
ing corners). Slightly abusing notation, we will sometimes

use the symbol hp to denote the characteristic map, f, of
the p-handle. So hp(DpXDq)=hp. This will avoid intro-
ducing different symbols for the characteristic map in the
future. The particular usage will be clear from the
context.

Theorem 3.1: An n-knot is a ribbon n-knot if and only if it
has a Seifert manifold which is ambient isotopic to

-_ Dn+1 u {hglleier} u {hilleier}
where Dn+1u{hn}lsisr} is contained in an equatoriali -
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(n+l)-sphere in Sn+2 (nzl).

Broofz Suppose an n-knot has a Seifert manifold in the
above form. Then 8(Dn+lu{h2|lsisr}) is a trivial n-link
of (r+l)-components, and the knot is a fusion of this
trivial n-link along the sets hi (lsisr). By Theorem 2.1,
the knot is a ribbon n-knot.

Conversely, suppose (Sn+2,fSn) is a ribbon knot. By

Theorem 2.1, fSn is a fusion of a trivial n-link, say

Slu...uSk+l along the piping tubes Nl,...,Nk. As in the
proof of Theorem 2.1, we may assume fSn=8[Blu...uBk+luNlu
.,.uNk] where the Bi's are pairwise disjoint (n+1)-disks,
BBi=Si for lsisk+l, and the singularities of the im-
mersed disk A=B1u...uBk+luNlu...uNk are all ribbon
singularities. By an ambient isotopy of Sn+2, we can move

the disks Bl,...,Bk+l so that they are contained in an

equatorial (n+1)-sphere, S, in Sn+2' Also, by the trans-
versality and tubular neighborhood argument used in Theorem

2.1, we can arrange it so that any intersection of a pipe
Ni with S is a ribbon singularity. Now, let B be an (n+1)-
disk in S which is large enough to contain the projection
of the ribbon disk on S in its interior. Let on be an arc in B

from B to Bk+1 so that intUcint(B~A). Let T be a pipe
in B along a from BB to fSn (see figure 9(b)). Then the
knot 8(B-(TuA)) is equivalent to the original knot, ks“,
since 3(B-(TuA)) is just the connected sum of fSn with
the unknot, BB (see figure 9(b)). ‘
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Suppose one of the pipes, say Ni, intersects the set

B-(TuBlu...uBk+l). This singularity can be removed by the
following procedure, which is a generalization to higher
dimensions of the "Dehn cuts" found in Papakyriakopoulos E

By smooth transversality, we may assume there is a

diffeomorphism d Dn+3-»sn+2 such that d(OXDn+l) is a

tubular neighborhood of E = Njn(B—(TuBlu...uBk+l)) in Ni
and d(Dn+lxO) is a neighborhood in B-(TuBlu...uBk+l) which
contains E as a proper submanifold. Choose d so that the
orientations of d(OXDn+l) and of d(Dn+lXO) agree with the
orientation of A.

Let g:Dn+¥—»Dn+l be the diffeomorphism which is the
/, identity on‘ OXDnXO, and is defined as follows in the

X1xn+2-plane:

u\I’-J

~\"I"-'

X-i if xeD,XOXD

s(X) =
X-e1(1"X')" if XeDlXOXDl—DiXOXD

~\“P-'

thinking of the xlxn+2-plane as a complem plane with the
xn+2-axis as the imaginary axis. Figure 7 illustrates the
action of g in the xlxn+2-plane.

‘ Replace d(OxDn+l) with dog(OxDn+l) and remove

int(d(D2+1XO)) from the result (see Figure 8). This
removes the ribbon singularity E without introducing any

new singularities. So this process can be repeated until
all the singularities are removed.

/\ The result is a smooth (after rounding corners)



20
/x t

(n+1)-manifold, M, whose boundary is equivalent to the ori-
ginal knot. M is orientable by construction, and thus is a

Seifert manifold for a knot in the class of fSn, which we,

will still refer to as fsn.
Let cl,...,cr denote the (n+l)-disks d(DP+lXo) which6

were removed around each singularity. Then

“ cl(B-(TuBlu...uBk+1uClu...uCr)) is an (n+1)-disk with k+r
open disks removed from its interior, and so can be regarded
as an (n+l)-disk with k+r n-handles attached trivially.
In fact, by construction, we have Dn+lu{h§|lsisk+r} c S,

an equatorial (n+l)-sphere in Sn+2.

The original l-handles,which have now been split up into
,l_ k+r l-handles, are attached to the set Dn+lu{h2llsisk+r}

to obtain v = Dn+l U {h2llsisk+r} U {hi|lelsh+r} in the
desired form. The proof is illustrated in Figures 9(a)-
9(e)-U

Since the n-handles are attached trivially in the above

proof, we can find disjoint n-disks df:8Dn£l(lsisk+r)suchttmt
B61 = S2'1"where-S?-1 is the attaching sphere for hg.

Since 8V is connected, it can easily be arranged so that the
attaching set for each l-handle (an SOXDn+l) has one com-

ponent in one of the 61's and the other component in
8Dn+l - L)§illsisk+r}, Then, of course, no 51 can inter-
sect two different l-handles. Figures 9(e)-9(g) illustrate
this process. ’ ~ "
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the square knot,
expressed as a
fusion of atrivial link/j ~31
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Of course, not every Seifert surface of a ribbon knot
need be of this special form, as the Seifert surface for
the square knot depicted in Figure 10 shows. It is not
clear, however, whether or not this Seifert surface is
ambient isotopic to one in the special form.

1/ ‘Q

Figure l0
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Question: Is every Seifert surface of a ribbon n-knot
ambient isotopic to one in the form of Theorem 3.1?

In the classical case, the genus of the special Seifert
surface constructed in Theorem 3.1 need not be minimal,
either, since the surface of genus l shown in Figure ll is
a Seifert surface in the form of the theorem for the unknot
-- the knot of genus O.

Question: Given any ribbon knot, is there a Seifert sur-
face for the knot in the form given in Theorem 3.1 which
has minimal genus?

/\ L}

K/W
< i '17‘~4-

/\ Figure ll
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§U. Semi-Unknotted Manifolds

In [U], Fox gives a definition for a semi-unknotted
surface, and shows that a knot is a ribbon l-knot if and

only if it bounds a semi-unknotted surface in S3. In Em],

Yanagawa gives a definition for a 3-manifold being semi-
unknotted, and proves the analogous result for ribbon 2-

knots. The following is a generalization of these defini-
tions and theorems.

Definitions: Let M be an (orientable, as always) (n+1)-
n+2manifold in S . A collection of n-spheres S$,S2,...Sgm

is called a trivial system of n-spheres in M if the
following conditions are satisfied:

1) {s§|1sis2m} is a trivial n-link;
&l12) for each i, lsism, there is an Ni - Snx[O,l] in

M such that BN1 = SiUSi+m and NinNj = 0 for i#J; and

3) M-§Qiht(Ni) is the closure of sh (n+l)-disk with
2m smoothly embedded (n+1)-disks removed.

Definition: An (n+1)-manifold M in Sn+2 is called semi-?- y

unknotted if
l) M is a disk; or
2) M has a trivial system of n—spheres.

We remark that if a manifold Mn+1cSn+2 is semi-
unknotted, then M 5 #CSlXSn)-B where B is an embedded

’\< (n+1)-disk in #§kSn) For let Nl,...,N be as in the
m
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definition of semi-unknotted. Then M-int(Nlu...uNm)
is an (n+1)-disk with the interiors of m disjoint (n+1)-
disks removed from its interior. Attach a disk B to BM

to form the smooth manifold M’ = Dn+l LJIW. Then
‘ 8B=8M

M’-int(Nlu...uNm) is an (n+1)-sphere with m disjoint (n+l)4
disks removed from its interior. when the Ni's are added

on, we have #(SlXSn), so M 3 #(SlXSn)-B, where B is an

(n+l)-disk.

TmaHem4J3 A knot (Sn+2,fSn) is a ribbon h-knot if and 0nZy_- 
if fSn==8M@:Sn+2 where isea semi-unknotted (n+l)-mani-
fold (nzl).

’\ n+2 n . .Proof. Suppose (S ,fS ) 1S a ribbon n-knot. Then by

Theorem 3.1, we may assume fSn=8M where

M = Dn+1 u {hinisism} u {hgllsism} and, where the h?'s are
attached trivially in an equatorial Sn+l in Sn+2. If
m=O, then fSn=8Dn+l and we are done, so we assume mzl from
here on. Since the h2's are attached trivially, we can

find disjoint n-disks D1,...,Dm in int(M)such that
ani = h2(8DnXO), so that {Diuh2(DnXO)|lsism} is a trivial
link. Let Ni be a tubular neighborhood of Diuh§(Dnxo) in
M which is sufficiently small so that NinNj=¢ for i¢j‘
(see Figure 12). Then {3Ni|lsism} is a trivial link of
2m components. Furthermore, M-int(Nlu...uNm) is an

(n+1)-disk with 2m disks removed from its interior, which ‘
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shows that the set {8Ni|1sism} forms a trlvlal system of
n-spheres 1n I

l l
2? \ \ h2
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, Conversely, suppose the knot (Sn+2,fSn) bounds a semi-
unknotted (n+1)-manifold M in Sn+2. Let Sl,...,S2m and
Nl,...,Nm be as in the definition of semi—unknotted
manifold. Then M’=M-int(Nlu...uNm) is an (n+1)-disk with
2m (n+1)-disks removed from its interior. Let S be the
boundary of an (n+1)-disk DO contained in the interior of
M’ and let {ai|lsis2m} be a collection of disjoint proper
arcs in M’ such that di joins SO with Si (see Figure 13).
Then for sufficiently small open tubular neighborhoods Pi
of the Qi'5, .M'-(P1u...uP2mu§O) E Snxl.

a1_ G2

a uas

Figure 13
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But then,one of the boundary n-spheres of M'—(§OuPfJ...uQmQ
is fSn, and the other n—sphere is thus of the same type.
But this n—sphere is a fusion of the trivial n-link
SO,Sl,...,S2m, hence is a ribbon knot by Theorem 2.1.5

This establishes three conditions which are equivalent
to a knot being a ribbon n-knot. Three more conditions will
be added in Chapter III to obtain Theorem III.3,3.
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II. COBORDISMS OF KNOTS

§l. Introduction and Definitions

In this chapter, we begin our study of knot cobordisms

Theorem 2.1 shows how the handle structure of the exterior
of a knot cobordism (Sn+2xI,w) can be calculated directly
from the handle structure of w. The theorem is set up to
apply to more general manifold pairs than knot cobordisms.

This theorem is applied in §3 to show that any ribbon
knot is cobordant to the unknot via a cobordism built up

with only 1- and 2-handles from the unknotted end. In
Chapter III, we will obtain a partial converse to this
theorem, and will obtain analogous results at the disk pair
level. The constructive nature of the proof of Theorem 2.1

is illustrated by the calculation in §3 of such a l-,2--
handle decomposition for a null-cobordism of the knot 9M6

(see 112$)-

Let h denote a handle of index r attached to the mani-

fold WW. Thinking of h as the characteristic map from

DrxDW'r to the handle, we call the set h(DrxO) the Care

of the handle and h(o2DW'r) the cocore. Also, h(8DrxO)

is the attaching sphere and h(OX8DW-P) the belt sphere.

The set h(8DrXDW'r) is referredtx>as the attaching set.
If (W,MO,M1) is a cobordism, by an r-handle on the

. 31
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oobordism we will always mean an r-handle attached to W on

Ml -- i.e., the attaching set of the r-handle is contained
in Ml. This then forms a new cobordism, (Wuhr,MO,Mi),A

4

where Mi = 8(Wuhr)—MO. A handle decomposition of W on MO

is a presentation .

(1-1) W 3 MOXI u hl u ... u hm,

where each hi is a handle on the cobordism
Wi_l Q MOXIuhlu...uhi_l. Handle decompositions of cobord-
isms always exist -- see [9] or E9] for the piecewise linear
case, and E for the smooth case.

Given a handle decomposition of W on MO, as in (l.l)
say, we can add a collar on Ml to obtain

/R W - MOXI u hl u ... u hm u Mlxl. V -

./X
I,

In this setting, there is a corresponding dualckomqxwitkm
z * x

W — Mlxl u hm u ... u hl u MOXI,
*where h_=hi as sets for each i, but the roles of the core

1 *
and cocore of hi are interchanged, yielding hi.

Thus,
index (hi) = W-indeX(hi).
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§2. Handle Decompositions of
Exteriors of Submanifolds

We are looking for information about the handle struc-
ture of cobordism exteriors. The techniques we produce for
obtaining this information apply in a much more general
setting, however, and we develop this more general setting
in this section. .

For convenience, we will use the piecewise linear
category. The proof works just as well for the smooth

category, but there is a slight technical advantage to the
piecewise linear approach. So, all manifolds here are PL

and all maps between manifolds are PL ' ’

In D3], Kearton and Lickorish show that any locally
flat PL embedding of a manifold M in QXI, where the »

dimension of the manifold Q is bigger than or equal to the
‘

Q

dimension of M, is ambient isotopic to a critical level
embedding. This is an embedding which, for some collared
handle decomposition of M of the form

M = collar Q handle u collar u handle u ...,,
embeds each collar in the I direction of QXI, and each

Q

_ v

handle in a level of QXI. In the smooth category, this
is analogous to requiring that the projection of M onto

I is a Morse function for M. We will show (for M c Qxl

codimension 2) how to obtain a handle decomposition of the
exterior of M in QxI if M is embedded as a critical level
embedding. Each handle in the critical level decomposition
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of M will induce a handle in the exterior of M whose index
is one larger than the index of the handle in M. The

techniques used in the proof are modeled after techniques
used by Vinogradov2nuiKushel'man [?.

Definition: Let M and Q be manifolds, and let a collared
handle decomposition of M on MOXI (M=¢ possible) be given.
An embedding f:M—+QxI is a critical level embedding for
the given decomposition if f embeds the igg-handle in
Qxti for some tie(G,l), and each collar of the form XXI is
embedded as the product of an embedding X—+Q and an order
preserving embedding I—+l.

/\ Theorem 2.1: Suppose M and Q are compact manifolds of
dimensions n+1 and n+2, respectively, and that
M § MOXI u {hillsisp} is a handle decomposition of M on M

If f:M—+QXI is a critical level embedding with respect to
the given decomposition such that MOXO<:QxO and

8M—(MOXO) = QXlnM, then the exterior of M in QXI is homeo-

morphic to XOXI u {hillsisp} where X0 is the exterior of
MO><0 in QXO, and index hi=.ijndex(hi) + 1.

Proof: Since MOXOCQXO, and since the collars are embedded

in an order preserving manner, there cannot be a handle

embedded in QXO. So, let te(O,l) be the level of the
lowest handle, say hl, and suppose the index of hl is r.

,\ We may assume that hl is the only handle embedded at level
t. Then hl is an (n+1)-disk attached to the n-manifold
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Mt = Mt_hl(§rxDn+l'r), where N% = Mr1QXt(see Figure l).
To describe the handle hl in the exterior of M induced by

hl, we need to have a neighborhood of hl parameterized
carefully. The following lemma accomplishes this.
Lemma 2.2: There is a homeomorphism g:DgXD2+l_rXD%—+Nh

where Nh is a regular neighborhood of the r-handle hl in
Qxt such that:

(i) Nh is a subset of a regular neighborhood Nt of
Mt in Qxt;

(ii) g restricted to D§XD§+l—r is the characteristic
map of hl; -

(iii) g(3DrXDn+l-PXO) C M£ ; and
/~ . r n+l-r 1 r n+rX l 8($0) g(D2xD2 xan L)8D2XD2 D ) Nt.

Proof (of lemma): The steps in the proof are illustrated
in Figure 2. Let N" be a relative regular neighborhood of
hl(DrXDn+r-1) (rel boundary) in Qxt. We may assume that
N"nMt = hl. Then there is a homeomorphism

g"=DrxD“+1‘PxDl—+N" such that g"(DrxDn*l'Px0) = hr.
Next, choose a collar 6' of g"(DrX3Dn+l-rXDl) in the
manifold cl(Qxt-img"). ‘This will induce a homeomorphism

g':DrXDg+l'rXDl-+N', where N1 = N"uC, and without loss
of generality, we may assume g'(8DrXDg+l-rX0) = N'nM£.

Then, let C be a collar of g"(8DrXDg+l_rXDl) in the manifold
cl(QXt—img'). Then there is a homeomorphism

,\ r n+1-r l " lg:D2xD2 XD -+Nh, where Nh =dN uC. By choosing C
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small enough, we can assume NhnM£ = g"(8DgxDn+l'PxQ)_
Nh is then a regular neighborhood of hr in Qxt. Nh can
easily be extended to a regular neighborhood of Mt so that
condition (iv) is satisfied. By construction, (i) — (iii)
hold.U

‘

Returning now to the proof of the theorem, the regular
neighborhood Nt can be extended to a regular neighborhood
N of M in QXI. Let X==cl(QxI-N), the exterior of M. We

will use XS to denote X n QXS where S c I. The following
evident lemma will be used repeatedly.

Lemma 2.1: Let N be a compact n-manifoZd,1H an (n+1)-
/\ manifold, and suppose N<:8M. Then the manifold

W = MLJNXI, obtained by identifying N with NXO, is
homeomorphia to W.

By isotopy uniqueness of regular neighborhoods, we can
\

assume there is an e>O such that X[O’t_€] = XOX[O,t-8],
X[t+€’s_€] = Xt+€X[t+e,t-e], where s denotes the next cri-
tical level after t, and x[t_€’t+€] = XtX[t-@,t+@l- Then
the manifold X[O,t] 1S obtained from X[O,t_e] by adding
a collar on part of the boundary. So Lemma 2.3 applies to
show X[O,t] 5 XOx[O,t-e]. Similarly,
X[t S] 5 Xt+€X[t+e,s-2]. Using these homeomorphisms, we

denote the subset of XOX(t-2) which corresponds to Xt by
XE, and the subset of Xt+€x(t+e) which corresponds to Xt
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by Xg. Then, since .

X[O’s] = X[O,t]LJX[t’s], we have

X[O,s] E XOX[O,t-e]XJiX+Xt+€X[t+e,s-2].
- t t

We need to show that
r+1(2.N) Xt+€ - X%LJh , where

the attaching set of hP+lis eehtaihed in 8Nt. Given this,
we would have

X[t,s] E Xt+ex[t+€’S'€1

= (X€uhr+l)x[t+e,s-6]

= X€x[t+8,S-8] u hr+l,

where hP+l denotes hrX[t+e,s-e].
So,

X[0’S] Z XOX[O,t—e]XJ:X+Xt+€X[t+e,s-e]
t t

'5 X0><[O,t-e]U[X%'><[t+e,s->2] U r'+l]

(2.5) Q x0x[o,t-e] U hr+1, by Lemma 2.3.
' To see (2.U), we use lemma 2.1. Let S+ denote the

image of a set S¢Xt under the homeomorphism

X[t S] = Xt+€XI. A regular neighborhood of Mt+€ in QX(t+e)
I

V r n+1-r 1 +can be obtained from N; by deleting the set g(D2XD> XD )
2

from Ng. But this set is an (r+l)-handle attached along the

r-sphere g(DgX8Dlu3D§XDl)+ C ENE (see Figure 3).
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/xi‘.
Thus, Xt+8 = X€uhr+l, as desired.

The same argument works for each critical level, so ‘

the proof of the theorem is complete. U t

Our interest here is in codimension two. However, I

for codimension larger than two, say m, the proof of the
previous theorem suggests that a critically embedded handle

of index r would induce a handle of index r+m-l in the
exterior. The main adjustment necessary in the proof would
be in Lemma 2.2.

This theorem, then, shows how a handle decomposition
for the exterior of an embedding can be calculated from a

x critically embedded decomposition ofi1$UUWHf0Mi An

interesting problem is whether this procedure can be

reversed -- i.e., given a handle decomposition, is it a

decomposition of the exterior of some embedding, and if so,

can the embedding be determined? Partial answers to this
question will be obtained in Chapter III.

I Sp

W... ..

t
xx Figure 3
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One of the advantages of carrying out the proof in the
PL category is that the attaching sphere of a handle in
the decomposition of the exterior is contained in a t-level
of QXI (see equation (2.5) in the proof). This is often an‘
aid when attempting to geometrically compute and explicitly
exhibit the attaching sphere. We illustrate the construc-
tive nature of the proof in the following example.

Consider the embedding f:Dl-+D2xI illustrated in
Figure U. Then f is a critical level embedding with respect
to the obvious decomposition of Dl_of the form

collar u O-handle u collar u lkhandle u collar.

| 1- IL‘ W
Let N be a regular neighborhood of f(Dl), and let X

denote the exterior of f(Dl) in DZXI. Then, by the theorem,
we know

f€x = XOXI U hl U h2

5 (SlxI)XI u hl u h2.

By examining the proof, we also know how the handles are
attached (see Figure 5). From this, we see that X has the
handle decomposition i11Figure(S(dramu1without the 2-handle).
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Even though only the attaching sphere for the 2—handle

is exhibited in Figure 6, this uniquely determines the
framing of the attaching set (up to ambient isotopy), since
the attaching sphere is codimension one in the attaching
set. When the codimension is larger, the framing of the
attaching set has to be calculated from the geometry.
Examples of this type are considered in the next section.
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§3. Null Corbordisms of Ribbon Knots

The main purpose of this section is to begin the char-
acterization of ribbon knots in terms of their null-
cobordisms. We show that any ribbon knot has a null-
cobordism, the exterior of which has a handle decomposition
consisting entirely of 1- and 2-handles from the unknotted
end. A partial converse to this is obtained in the next
chapter.

To begin with, let us suppose that K = (Sn+2,fSn)
is a ribbon knot. Theorem 1.2.1 shows that fSn is a fusion
of a trivial n-link in sn+2 -- say sl,...,sk+1 fused
along the pipes Nl,...,Nk. From this representation, it
is easy to construct a critical level embedding
T:Dn+l—+Sn+2xI such that ?|8Dn+1 = flsn. Then, using
Theorem 2.1, we will be able to compute a handle decompo-

sition of the exterior of F(Dn+l) in Sn+2xI.
To construct the disk, first embed f(Sn)x[O,1/3]

in Sn+2xI under inclusion. Then attach the pipes A

Nix<1/3) to r<s“>x[o,1/31. Next, attach
(s1U...USk+l)X[l/3,2/3]

to
f(sn)x[0,1/3] U N1x(l/3) us... t NkX(l/3),

Now, let Bl,...,Bk+1 be disjoint (n+1)-disks in sn
such that BB1 = Si for each i. Finally then, attach the

- n+1

+2

disks BiX(2/3) to the above set to obtain the disk f(D ),
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which is defined as

f(Sn)><[O,'/3] u (Nlu...uNk)><'/a u (S1 Sk+l)><[‘/2,2/3] u (Blu...uBk+l)><2/a.

Figure 7 illustrates the construction for the unknot pre-
sented as a fusion of a link with two components.

Note that each set NX(l/3) is actually an n-handle
attached to the cobordism fSnX[O,l/3], and each set
BiX(2/3) is an (n+l)—handle attached to the cobordism

(3.1) L = fsnx[0,1/3] u (Nlu...uNk)X(l/3) u (S1u...uSk+l)X[l/3,2/3]

Thus the set f(Dn+l) has been expressed in the form

(3.2) collar u n-handles u collar u (n+l)-handles,

where the collar structure is embedded productwise along
the I direction of Sn+2XI, and each handle is in a t-level
of Sn+2xI -- i.e., T is a critical level embedding with
respect to the decomposition (3.2). This motivates the
following definition.

Definition: An (n+l)—disk fDn+l ¢ Sn+2XI such that
r(aon+1> c sn+2x0 is called a (PL) ribbon disk if r is
ambient isotopic to a critical level embedding with respect
to a collared handle decomposition of Dn+1 of the form

Snxl u n-handles u collar u (n+1)-handles.

For the smooth case, we can go through the above
construction, and then approximate the resulting disk

f~ (preserving ambient isotopy type) by a smoothly embedded
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disk, say g:Dn+l—+Sn+2XI, such that projection onto the I
factor of Sn+2XI is a Morse function for gDn+l having criti-
cal points of index n and n+1 only (see [22 or [2§). For

the classical case, Fox [3] uses this method to describe
2-disks which bound knots in H-disks by exhibiting 3-dimen-
sional cross-sections. -

Thus, in the smooth category we have the following
definition.

Definition: A smoothly embedded (n+1)-disk fDn+l in Sn+2xI—.__-_Z-___-_i-i-

such f(8Dn+l)¢Sn+2XO is a (smooth) ribbon disk if the pro-
jection of fDn+l onto I is a Morse function for fDn+l having
critical points of index n and n+1 only.

By the above construction, then, we have the following
theorem.

Theorem 3.3: Every ribbon knot (Sn+2,fSn) bounds a ribbon
disk in Sn+2XI where sn+2 = sn*2xo.

Now, given a ribbon disk, we can use Theorem 2.1 to
find a handle decomposition of the exterior of the disk.
Then, the exterior of the disk has a handle decomposition
on the ribbon knot complement consisting of (n+l)- and

(n+2)-handles only. The dual handle decomposition will then
have handles of index l and 2, since Sn+2XI has dimension

n+3. This yields the following result.
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Theorem 3.H: Given a ribbon (n+1)-disk in Sn+2XI, there is
is a handle decomposition on Sn+2Xl of the exterior of the
ribbon disk consisting of k+l 1—handles, k 2-handles, and

4

and no other handles. -

We can slightly alter the construction of the ribbon
disk from the ribbon knot to produce a cobordism between
the ribbon knot and the unknot. All we need to do is forget
to add one of the (n+l)-handles on the submanifold. If we

omit, say, the (k+l)§E one, we have

L u (Blu...uBk)X(2/3) u Sk+lX[2/3,1]
when L is defined by equation (3.1).

This produces the desired cobordism, and if we think of
it as proceeding from the unknot to the ribbon knot, we can

apply Theorem 2.1 (upside down) to obtain

Theorem 3.5: Given any ribbon n-knot, there is a cobordism
between it and the unknot which has a handle decomposition
of its exterior consisting entirely of k 1-handles and k

2-handles from the unknotted end.

In the above construction, there actually were k+l
different choices for the omitted (n+1)-disk. We could have

chosen to omit Bl, for example, instead of Bk+l. It is not
clear if the various cobordisms obtained are equivalent as

manifold pairs.

Question: Are different cobordisms obtained when different
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(n+1)-disks are omitted from a ribbon disk to obtain a cobordism?

It is worthwhile to consider this theorem from a

slightly different point of view. Given a ribbon knot

K = (Sn+2,fSn), we construct a cobordism between K and the

unknot as above. We can then cap off the unknotted end of
the cobordism with the unknotted disk pair, to obtain an

(n+3,n+l)-disk pair whose boundary is the given ribbon
sphere pair, K.

Another way of achieving the same result would be to
choose some large disk D?+2 c Sn+2 such that fSn c D2+2.

Then a ribbon n-disk can be constructed in D?+2XI using the

method described earlier. The (n+3,n+l)-disk pair pro-
/\ duced here would be homeomorphic (as pairs) to the pair

Z\\_

in the previous paragraph. We will make use of these
observations in §III.3.

It is instructive at this point to consider an example

FL;we8(a)illustrates the classical ribbon knot, 9M6. After
some manipulation, 9M6 can be expressed as a fusion of a

trivial link, as shown in Figure 8(b).

4’?-

QB @Qé?3>
Ca) (b)

Figure 8
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' Consider the representation of 9M6 in Figure g(b) as a

subset of D3, then we can construct a critical level
embedding of a 2-disk in D3XI by the method discussed»

earlier in this section. Theorem 2.1 can then be used to
calculate a handle decomposition of the exterior of the
2-disk in D3XI, starting at the top. This would yield a

N-disk, two l-handles, and a 2-handle. Up to homeomorphism

type, there is only one way to attach the l-handles. The

only thing to determine then is how the 2-handle is attached
From equation (2.5) in the proof of Theorem 2.1, it

follows that
XXEO,2/3] E Xx[O,l/3] U B2.

In particular, the attaching sphere for hz, say F, is con-

tained in S3X(l/3). But h2 is obtained from a 3-dimen-
sional handle of index 2, h2, by crossing with an interval.
So the attaching curve of h2, say U, together with F,

bounds an annulus, A c S3X(l/3), which comes from the pro-
duct structure on hg (see Figure 9). But Lemma 2.2 asserts
that U bounds a 2-disk B c S3X(l/3) Such that BuA is a

2-disk in s3><(1/3). This shows that U and flare unlinked
when viewed from S3x(l/3). So, not only do we have the
attaching sphere for E2, we know that the attaching sphere

for h2 is a "push off" of 6 in the product structure of h2,
With this in mind, we can compute the attaching curve

for the 2-handle. Figure 10 shows the critically embedded
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l-handle on the submanifold. By Lemma 2.2, the attaching
curve for h2 is the l-sphere which bounds the normal 2-disk
indicated in Figure ll. By the above observations, then,
the attaching sphere for h2 is the unlinked push—off of
this sphere.

The relationship between the attaching sphere of the
2-handle and the two 1-handles is illustrated schematically
in Figure l2. This translates to the handle diagram il-
lustrated in Figure l3, being careful that all the orienta-
tions are preserved using the correct crossovers.

In E and [yg, Sumners obtains a handle diagram for
the exterior of,a disk pair which bounds the knot 9H6. His

handle diagram is illustrated in Figure 14. Notice that
the attaching spheres of the 2-handles in Figures 13 and 1U

are not isotopic. So it is not clear if the two handle

presentations are homeomorphic, or if the disk pairs from

which they come are equivalent.
To be able to solve problems of this type, a handle

calculus for pairs needs to be developed. This is the
main topic.of the next chapter.
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III. THE HANDLE CALCULUS FOR PAIRS

§l. Handle Presentations of Manifold Pairs

In this chapter, we point out how the well-known
theory of handle moves on cobordisms can be applied to pro-
duce a theory of handle moves for certain manifold pairs.
These techniques are developed in §2. In §3, the techniques
are applied to ball pairs which bound ribbon knots, extend-
ing the results of Chapter II. Some applications and

examples then follow. The handle calculus here is an

/- analogue to that of Kirby D5].

To facilitate the development of these handle moves,

we will use the concept of a "cobordism with boundary."
By a oobordism with boundary, we mean a compact (m+l)-
manifold W together with two disjoint compact m-dimensional
submanifolds with boundary, MO and Ml, contained in 8W.

An r-handle on a oobordism with boundary will always be

assumed to be attached to intMl, and will be denoted Wuhr.

Definition: l) A manifold pair (M,Q) is called proper if
Qr18M = SQ.

2) Let (M,Q) be a compact proper manifold pair. A

handle presentation of the pair (M,Q) is a homeomorphism

(M,Q) E (N,Q)lJ handles, where N is a regular neighbor-
hood (rel 8Q) of Q in M, and where the attaching set of

53
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each handle misses Q. when we write (N,Q) u handles, we

will assume the handles are attached away from Q.

Given a manifold pair, if an open regular neighborhood
of the submanifold is removed, a compact manifold remains
which can be viewed as a cobordism with boundary. This
allows techniques used in the handle theory of cobordisms
to be transferred to manifold pairs. The proof of the
next theorem illustrates this procedure.

Theorem: Let (M,Q) be a compact proper manifold pair. Then

(M,Q) has a handle presentation. T

E3992: Let N be a regular neighborhood of Q in M. Also,
let W = cl(M-N), and MO = W n N. Choose a collar V on

BMO in cl(8W-MO), and define Ml = cl(8W-(Md1V)). Then W

is a cobordism with boundary between MO and Ml (see Figure
l).

W

V  
M1

Figure l

2
\\/
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Let C be a collar on MO in W. By isotopy uniqueness
of collars, we may assume that the product structure on

the collar C extends the product structure on the collar V

Then there is a handle decomposition of W on MO rel V:
W = C u handles (see Figure 2).

Plugging the pair (N,Q) back in by the identity map,

we have

(M,Q) = (N,Q) u C u handles

5 (N,Q) u handles.

Thus, any proper manifold pair (M,Q) has a handle
presentation.

me» 1+1 1 em

Figure 2
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§2. The Handle Moves

Let Wm be a cobordism with boundary between MO and Ml, and

let V = cl(8W-(M1uMO)). We will review the handle moves

in the following lemmas. Proofs to these lemmas are con-
tained in [2Q.

Lemma 2.1: Let G,B2BDrXDn+2-P-—+intMl be ambient isotopic—_-_i_-_1_1----

embeddings in Ml; then there is a homeomorphism

h:W&h€;5f§WEhr which Zeaves V pointwise fixed.

Lemma 2.2 (Reordering lemma): Let W‘ = W u hr u hs where

hr is attached to intMl, hs is attached to
intM2 = 3(WUhr)—(VUMO), and ssr. Then W’ 3 W u hs u hr
where hs n hr = ¢, and the homeomorphism Zeaves V pointwise
fixed.

Definition: Two handles, hr and hr+l, are called comple-

mentary if the attaching sphere of hP+l intersects the belt
sphere of hr transversely at a single point. c

Lemma 2.3 (Cancellation lemma): Suppose W’ = W u hr u hr+l
where hr and hr+l are complementary. Then there is a homeo-

morphism h:W'—+W which is the identity outside an arbi-
trary neighborhood of hr u hr+l (and hence, a homeomorph-

ism rel V).

+—"1

21>

\\\'U)C

13‘
'"$

Lemma 2.H (Adding lemma): Let W‘ = W g h 2 such

that imd n imB =\¢, n-r 2 2, and r 2.2. so, let Y be
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the attaching map obtained as follows: choose an

X e 3Dn+2_r, and pipe (inintMf the attaching sphere of
h2 to c(3DPXXXl), where c is a collar of the boundary of
the attaching set of hl in 8[cl[W-(MOuVuhluh2)]); the
result of the piping collapses to the attaching sphere of
h2, and this collapse defines an isotopy which takes

I-1'1

-<c:

U‘
r\J"$

imB to imy. Then W‘ 5 Wéih (rel V) (see Figure 3).

Remark 2.5: To apply these handle moves to proper manifold
pairs of the form (Mn+2,fDn), we obtain a cobordism with
boundary from the pair as in §l. As before, let N be a

regular neighborhood of fDn in Mn+2,

W = cl(M-N), MO = WnN, V a collar on BMO in cl(3M-MO),
and Ml = cl(8W-(MOuV)). Then W is a cobordism with
boundary between MO and M1 (see Figure l).

Now, all the isotopies and homeomorphisms in Lemmas

2.1 - 2.H were done leaving VuMO pointwise fixed. Thus,

if we perform a handle move on the cobordism W to obtain
W’, WuN will be homeomorphic to W'uN since r

0\I-W - W’ (rel VuMO). Also, we can choose the homeomorphism

wen E W'uN to be the identity on N, so that the pairs (M,Q)

and (M',Q) are homeomorphic, where M’ = 8(W'uN). So, each

of the Lemma's 2.1 - 2.“ induces a "handle move" on a

handle presentation of a manifold pair.
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§3. Handle Moves on Disk Pairs with l- and 2-handles

Theorem II.3.5 shows that any ribbon n-knot is null-
cobordant by means of a cobordism built up with only 1- and

2-handles from the unknotted end. If the unknotted end of
the cobordism is capped off with the unknotted disk pair,
then we have

Theorem 3.1: Any ribbon n-knot bounds an (n+3, n+1)-
disk pair which has a handle presentation consisting entirely
of l- and 2-handles.

Conversely, suppose (Dn+3, fDn+1) is a proper disk pair
having a handle presentation consisting entirely of l- and

2-handles. Is the bounding sphere pair, (8Dn+3, f(3Dn+l)),
a ribbon knot? We have only a partial answer to this ques-
tion. Because of this, we call such a sphere pair a weak

ribbon n-knot. Then the question becomes "Is every weak

ribbon knot a ribbon knot?" In this section, we will show

that the answer to the above question is yes, if we require
that the attaching spheres of the 2-handles be of a special
form.

' Suppose (Dn+3, fDn+l) is a disk pair obtained by adding
k l-handles and k 2-handles to the unknotted disk pair (since
the total space is a disk, there must be the same number of
1- and 2-handles). Then the exterior of fDn+l in Dn+3 has a

handle decomposition built on an (n+3)-disk consisting of
k+l l-handles and k 2-handles. In the exterior of the
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bounding sphere pair, we can choose k circles, S%,..., Si,
such that each Si goes once around the ign l-handle, and does

not intersect any other l-handle. We say that the k 1- and

I 2-handles are attached to (Dn+3, Dn+l) in special cancelling
pairs if there is an isotopy Of 9(Dn+3 U l—handles) which
moves the attaching spheres of the 2-handles to S%u...uSi.
Figure U shows examples and non-examples of special cancel-
ling pair presentations.

In these schematic diagrams, the attaching spheres for
the 2-handles are drawn to show their relationship to the
l—handles and the submanifold. In Figure U(a), if n = 1,
then the attaching sphere for the 2-handle is not isotopic

,\ to once around the 1-handle, and is thus not an example of
a special cancelling pair presentation. In spite of this,
it turns out that the total space is a disk, and the bounding
sphere pair is the classical knot 9M6. If n 2 2, then the
attaching curve for the 2-handle is isotopic to once around
the 1-handle, and thus is in special cancelling pair form.
More generally, given any disk pair(Dn+%fTP+lL n22,obtained
from the unknotted disk pair by adding a single pair of 1-
and 2-handles, the presentation must be a special cancelling
pair one. This is because the attaching sphere must be

homotopic to once around the 1-handle, and in this range of
dimensions, homotopy implies isotopy.

Figure U(b) gives an example of a handle presentation
”* which is not a special cancelling pair one, even in higher
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dimensions. However, using handle moves, this presentation
can be altered to become the empty presentation of the
unknotted disk pair (hence in special cancelling pair form).
Handle moves can also be used on the presentation in H(a) to
adjust it to special cancelling pair form.

Question: Can any 1-, 2-handle presentation of a disk pair
be changed to one in special cancelling pair form by the

handle moves?

These two examples, together with several others which have

been checked, suggest that the answer is yes.

We now prove the promised partial converse to Theorem

/i 3.1.

Theorem 3.2: If a sphere pair bounds a disk pair having a

handle presentation consisting entirely of 1- and 2—handles

in special cancelling pair form, then the sphere pair is a

ribbon knot.

QQQQQ: The proof follows a method of Roseman's El, the
main idea of which was originated by Sumners [y. The idea
is to use the definition of special cancelling pairs to
isotope the 2—handles into cancelling position with respect
to the l-handles. This isotopy drags an (n+1)-disk which

bounds the knot around the l-handles. By doing some cutting
and pasting on the (n+1)-disk, a ribbon immersed disk will

;”\ be produced without altering the boundary.
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So let
~ + . 2 .<Dn+3, fDn+l) = (Dn 3, Dn+l) U {hiilslsk} U {hillslsk},

where the handles are attached in special cancelling pair form. We

first want to construct an (n+l)—disk, B, most of which is in
6Dn+3, such that as = f(8Dn+l). we will be able to get all
of B in 3Dn+3 by introducing some ribbon singularities. To

do this, we return to our usual notation: N is a regular
neighborhood of fDn+l in Dn+3; C is a collar on WnN in W,

where W = cl(Dn+3~N). Then NuC is an (n+3)-disk, and by

isotopy adjustment, we can assume the l—handles are attached
in a strip homeomorphic to Dn+1xI in 8(NuC). We can then
choose an (n+1)-disk, in 8(NuC), which misses the strip and

whose boundary is f(9Dn+l). (Figure 5 illustrates this).
This is the desired disk, B.

l—handlesf\ /\/
f(D"+1) N c B

Figure 5
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Without loss of generality, we may assume that the

attaching sphere for each of the 2-handles intersects B

transversely at a finite number of points, letting
xl,x2,...,xm e B denote all such points. B can be expressed
as V

B = BO u Bl u ... u Bm u Pl u ... u Pm,

where the Bi's are disjoint, XieBi for izl, and for each

such i, Pi is a pipe from Bi to BO along an arc, ai. (See

Figure 6).

B

P2 =\ /=1“

Each pipe, Pi, is then a l-handle attached to BOuBi, with ai
as the core of the handle. This endows each Pi with the

" usual l-handle product structure, DlxDn.
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Now, since the 1- and 2-handles attached to NuC are in
special cancelling pairs, there is an isotopy of
NuC u l-handles which moves the attaching curves of the

2—handles to once around their corresponding l-handles. Let

¢ denote the finishing homeomorphism of this isotopy.
By standard transversality and regular neighborhood

arguments, we can assume that each ¢(Bi) (izl) is contained
in a distinct Sn+1 factor in the product structure, DlXDn+2,

of the l-handles, and that ¢(Pi) hits the l-handles, h§, in
sets of the form JxDn+l, where J is a subinterval of D1 and

Dn+l¢Sn+l in the product structure, DlXDn+2. We can also
assume ¢(BO) c NuC so that it does not interfere with any

,~ of the l-handles. Finally, by replacing the 2-handles with
"thinner" ones, we can suppose that ¢(Pi) c 8Dn+3 for each

1. The only parts of the disk, ¢(B), which are not in 8Dn+3

then are ¢(Bi) for izl. But this can be corrected by

replacing each ¢(Bi) by the set Bi = cl(Sn+1-¢(Bi)), where

Sn+l represents the Sn+l factor which contains ¢(Bi) in the

l-handle. Then  

¢(BO) u Bi u ... u Bk u ¢(P1) u ... u ¢(Pk)

is an immersed (n+1)-disk contained in 3Dn+3. But all the

singularities are ribbon singularities by construction, since
ythey are of the form ¢(Pi)nB5. U

We illustrate the proof with an example; In §II.3, we

/_ obtained a handle presentation for the exterior of a disk '

pair which bounds the exterior of the knot 9H6 (see Figure
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II.l3). By re-inserting the neighborhood of the submanifold,
we obtain a disk pair which bounds a sphere pair which
represents 9H6. If we arbitrarily select the left 1-handle
in Figure II.l3 to be the l-handle which goes around the
submanifold, we obtain the handle presentation of Figure 7(a),
which is a special cancelling pair one. Dragging the attach-
ing sphere of the 2-handle back to cancelling position, we

obtain (b). If this were done strictly by the method

outlined in the proof, we would have pulled all three points
of intersection up in the l-handle. But noting that we can

introduce a ribbon singularity in the disk by leaving the
left and center intersection points fixed simplifies the
calculation considerably. Replacing the small 2—disk which

intersects the attaching sphere of the 2-handle by its
complement in the S3 factor, we have (c). Although we can

now "see" the knot, it is very easy to make a mistake in
recognizing which knot is obtained, as is pointed out by

Sumners [§. To overcome this, we prefer to pull the knot
away from the l-handle by going over the 2-handle.“ This can

be accomplished by the indicated pipings to the unknot. Note

that if the 2-handle had been attached by a different framing,
we would have picked up crossovers in the band when it was

dragged over the 2-handle. Once the knot is off of the
l-handle, we can cancel the 1- and 2—handles, and view the

3knot in the standard S , where it is easy to recognize.
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After the following definition, we will sum up, and add

to, the results we have on ribbon knots. We say that a '

handle decomposition of a cobordism between a knot and the

unknot, consisting entirely of 1- and 2-handles from the

unknotted end, is in special cancelling pair form if the

induced handle presentation of the disk pair obtained by

capping off the unknotted end with the unknotted disk pair
is in special cancelling pair form.

Theorem 3.3: Let K = (Sn+2, fSn) be an n-knot. The following
conditions are equivalent: - -

(a) K is a ribbon knot;
(b) fSn is a fusion of a trivial n-link in Sn+2;

(c) fSn is ambient isotopic to
a[nn+1u{h§|1sisk}u{h%|1s15k{] where Dn+1u{h2|lsisk} is

. . . + . +contained in an equatorial Sn 1 in Sn 2;

(d) fSn = 8Wn+l, where W is a semi-unknotted manifold
in Sn+2'

(8) rs“ bounds a ribbcn disk in s“+2x1;

(f) K is cobordant to the unknot by a cobordism built
up with only 1- and 2-handles in special cancelling pairs
from the unknotted end;

(g) K bounds a disk pair having a handle presentation
consisting entirely of 1- and 2-handles in special cancelling
pair form.
Proof: The equivalence of (a), (b), (c), and (d) is covered

in Chapter I. We will complete the proof by observing
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(a)-—>(e)—>(f)—>(s)—>(a)-
(a)-—>(e): Theorem II.3.3.
(f)-—>(g): immediate.
(g)-—>(a): Theorem 3.U.
This leaves only (e)——>(f):

So suppose fDn+l c Sn+2XI is a ribbon disk. From the
proof of Theorem II.3.5, we know that this ribbon disk induces
a cobordism between the knot K = (f(aDn+l), Sn+2xO) and the
unknot having a handle decomposition consisting entirely of
1- and 2-handles from the unknotted end. The problem, of
course, is that this may not be a special cancelling pair
presentation. However, from the remark in §II.3, we do know

/\ the general form of the attaching spheres of the 2-handles.
They all are obtained by piping two circles together, where

each circle goes once around a 1-handle (possibly the 1-handle
around the unknot). If each attaching curve is the result of
piping a circle around the unknot to a circle around a

different l-handle, then the handle decomposition is a

special cancelling pair one, and there is nothing to do. On

the other hand, the handles could appear as in Figure 8(a).
But this can easily be fixed by a use of the Adding Lemma

(Lemma 2.“). The result of the indicated piping is as shown

in Figure 8(b), since we have already seen how to compute a

"push off" of the attaching curves of the 2-handles obtained
using the proof of Theorem II.2.l (see §II.3). The redrawing

'”7 in Figure 8(0) makes it clear that the handle decomposition
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is a special cancelling pair one.

Using this technique wherever necessary, it is easy to
transform any handle decomposition obtained through Theorem

II.3.5 into a special cancelling pair one. This completes
the proof. U

The technique just used cannot alone transform the
handle decompositions in Figure U to special cancelling pair
ones. Those require other methods, although they can be so

transformed. In fact, the author knows of no 1- and 2-handle
presentation for a disk pair which cannot be transformed to a

special cancelling pair one using the handle moves of §2. As

has been pointed out once, then, a good research problem is
to investigate this to see if it can always be done.

(4? plF»- *&
T1______T_____ ____1b___ __ Sn

1

(a)

Figure 8
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§H. Row and Column Operations
on Incidence Matrices

Our main interest here will be to apply the handle

moves to disk pairs which have handle presentations with
only l- and 2-handles. Many of the techniques, however,

work just as well for manifold pairs which have handle pre-
sentations with only r- and (r+l)-handles. We develop the

ideas in this more general setting, specializing later when

necessary. We will keep track of the effect of the handle

moves using an incidence matrix. .

Suppose, then, that (Mm,Q) is a compact, connected,

proper manifold pair having a handle presentation of the
,\ form

(M,Q) Z (N,Q) u {hgllsiss} U {h§+1|1e1et}.

Since M and Q are both connected, we can assume

(U.l) r 2 l and r+l s m-l.

Let e(h§+l,h§) denote the incidence number of the handles

h§+l and hg, i.e., the intersection number of the attaching
sphere of h§+1 with the belt sphere of hi. Also, let A

denote the txs matrix whose (i,j)§E-entry is s(h§+l,h§).
It is well known that Lemmas 2.1 - 2.N allow elementary

row operations to be performed on the incidence matrix A

(see [9], [2§). For our purposes, however, we will also
need column operations. We will review the row operations ‘

I before developing the column operations.
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b Row Operations

El: Any row of the incidence matrixlkcan be replaced by

itself plus an integral multiple of any other row.

To see this, we first show how to replace row il by

itself plus row i2(il¢i2) using the Adding Lemma. In the
cobordism with boundary, W = cl(M-N), replace h§+l by a

 1

handle whose attaching sphere is obtained by piping the
attaching sphere of h§+1 to a parallel of the attaching

1

sphere of h§+l so that their orientations match. Call the
2

'(r+l)-handle so obtained h?Tl. Then the formula/-\ 1

e(n§T1,h§) = @(h§+l,h?) + e(h§+l,n§)
1 1 J 2

holds for each j, and shows that the desired row operation
has been accomplished.

To subtract row i2 from row il, do the piping so the
orientations of the attaching spheres disagree. Repeating
the appropriate process k times, row il can be replaced by

itself plus or minus k times row i2. By Remark 2.5, this
row operation preserves the homeomorphism type of the pair
(M,Q)-

3g; Any row of the incidence matrix can be replaced by its
negative. -



/\\

/\

b

75

This operation is easily accomplished by reversing the
orientation of the appropriate (r+l)-handle.

Bi: Any two rows of the incidence matrix can be interchanged

This is simply a matter of relabelling the (r+l)-handles.

Column Operations

with some care, the column operations which are ana-
logous to the row operations can be derived from the row

operations themselves. The idea is illustrated in the
following example.

Example: O l -2
Let A = 2 1 -l We want to

3 -1 -2

replace column 2 by itself plus column l.
0 1 -2 T 0  1 -2 0

2 1 -1 .__., 2 1 -1 0

3 -1 -2 3 -1 -2 0

-1 1 0 1

O 1 -2 O
1  1 -2 0

Q->nf+oy O 3 -1 2

R2-iR2+ 2'R‘ O 2 "2 3
R3—> Ra‘? 3'R‘ 2 -2 3
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The first step can be easily accomplished by intro-

ducing a cancelling pair of handles so that the desired
matrix results. The second step consists of performing the
indicated row operations. The third step is the only pro-
blem. Figure II.lH, for example, has [I Q] as an inci-
dence matrix, but none of the handles can be cancelled
there. In special situations, the Whitney lemma would apply
to show that the desired cancellation can be done, but by

attention to some preliminary detail, it can be arranged so

that the cancellation can always be done to produce the
desired column operation.

C1: Any column can be replaced by itself plus any integral/l __
multiple of any other column.

We begin by showing how to replace column jl by itself
plus column J2. To the given handle presentation of (M,Q),
we introduce a cancelling pair of handles, h:+1 and hii,
so that the matrix of incidence numbers is

A 0 O: if J or J2:
where Uj = l, if j = jl, and

“j 1 -1, if 3 = 32.

We also require that the attaching sphere of hiii intersect
the belt sphere of ng in a single point if J = J1, J2.

By standard arguments, we may assume that the attaching
curves of all the (r+l)-handles intersect h§2 in a set of '
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the form Drxxa for some xa{:3Dm'P, where the set DrXDm_r

has been identified with the r-handle hg . Since
2

m-r-l 2 1 (follows from (H.l)), the belt sphere of hg has
2

dimension greater than or equal to l. Then we may choose

an arc Y in the belt sphere of hg which begins at the point
2

of intersection with the attaching sphere of hiii, hits all
the points of intersection of the belt sphere with the
attaching spheres of the other (r+l)-handles, and terminates
at one of the intersection points. This arc then induces
an ordering on the points of intersection Oxxl, OXX2, ... ,

Oxxq, where 0Xxl is the intersection point on the attaching
sphere of hiii (see Figure 9). For later reference, let ni
denote the subscript of the (r+l)-handle to which Oxxi

belongs.

Y

hr i  \ X4

X3

X2

X1

.

attaching spheresof other (r+l)—handles ‘\attaching spherer+lof ht+l
Figure 9
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Let [-e,e]r denote the r-fold Cartesian product of
[-8,2] with itself. Then [-e,s]Xy is a pipe connecting
the attaching spheres at the intersection points. We apply
the Adding Lemma. Choose a collar

e;aDr+lxaDm'r'1x1-———-»e1(M - (h€i%n1h£+l)]
q

on the boundary of the attaching set of hzii. "Add" hzii
to h;+1 by piping the attaching sphere of hg+l to

Q Q

c(3IP+lXxqXl) using the tube YX[-e,e]r. Inductively, pipe
the attaching sphere of h;+l to c(8Ir+1Xxn X(%)i) using

q-i q-i
' iYq_iX[-e(%)l,e(%) ] where Yq_i denotes the subarc of Y

from X1 to xq_i (the inductive process runs from i=0 to/\ i = q-2). See Figure l0.

attaching sphere of hgii

’“ Figure 10
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At each stage of the inductive process, the effect oni

the incidence matrix is to either add or subtract the
(nq_i)§E row to (or from) the (t+l)§£ row, depending on

whether or not the piping tube matches the orientations of
the attaching spheres. Thus, after the completion of the
inductive procedure, the effect is that each row i
(i = l,...,n) has been replaced by itself plus
e(h§+l,h§ ) times row t+l. So the J2EQ column is a zero

2

column, except for the 1 in the (n+l)§E row. More than that,
the only point of intersection of an attaching sphere of
an (r+l)-handle with the belt sphere of hg is Oxxl. Thus,

2

/~. the handles hg and hiii can be cancelled. By inserting
2

the old (s+l)§E column in the JQQQ slot (accomplished by

relabellingkfa as h? ), we achieve the desired incidences+l J2

matrix. This shows how to replace column J1 by itself plus
column J2.

To replace column J1 by itself minus column J2, the
same proof as above works if we begin with

A 9 0 if J #11, J2
where aj = By

repeating these operations, it is possible to replace column

J1 by itself plus any integral multiple of column J2.
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Qg: Any c0Zumn of the incidence matrix can be replaced by

its negative.

Qiz Any two cclumns of the incidence matrix can be inter-
changed.

These follow by reorienting and relabelling.
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§5. Incidence Matrices for Disk Pairs

Let (Dn+2,fDn) be a disk pair, and suppose

(Dn+2,Dn) u {h%llsism}"u {hillsism}
is a handle presentation of the disk pair (since Dn+2 is
homologically trivial, there have to be the same number of
l- and 2-handles if there are no 3-handles). In this case,
there is another incidence relationship not already covered
by the usual incidence matrix A. This extra relationship
comes from the fact that the exterior of the disk Dn, in
n+2

D , is an (n+2)-disk with a l—handle attached, and the
incidence of the 2-handles with this l-handle can be

measured. Intuitively, these incidence numbers are just
the algebraic number of times the attaching spheres of the
2-handles wind around the submanifold.

So, to measure this incidence relationship, we can

replace (Dn+2,Dn) in the handle presentation with
n+2 1 2 2 1 2(D u hm+l u hm+l, cocore of hm+1), where hm+1 and hm+l

are complementary (see Figure ll). Then the incidence
numbers e(hi, hi+l), lsism, give the desired information.
We can then augment the mxm incidence matrix A with these
additional incidence numbers as an (m+l)§£ column to
obtain the mx(m+1) matrix K.

The three row operations from the previous sections
apply to the augmented matrix K. However, with the column-

operations, we need to exercise some care. One obvious
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cocore of hm+l m+l

2N - hm+l

Figure ll

point would be that we would not want to interchange column

m+l with any other column, since the (m+l)§E-column is
reserved for the winding numbers of the 2-handles around

the submanifold. In general, we can do any of the handle
2
m+l

fixed. This assures that the homeomorphism type of the
moves, as long as we are careful to keep the set N'= h

disk pair is unchanged.

With this in mind, a check of the other column opera-
tions shows that we do not want to allow the JEE column

(lsjsm) to be replaced by itself plus a multiple of the
(m+l)§£ column, since the handle sliding involved would

move h+l. However, replacing the (m+l)-column by itself
plus a multiple of another column can be effected leaving
hi+l fixed. Thus, for the augmented matrix, K, we have the
following row and column operations whichcmu1be geometrically
realized.
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El:
53: as stated in §2.

K11

Cl':_ Column jl can be replaced by itself plus any integral
multiple of column J2 (J2 # jl,m+1). A

C2‘: Any column can be replaced by its negative (same as

C2).

C3‘: Column jl can be interchanged with column j2, pro-
vided jl # m+l # j2.

We will now use the matrix operations to prove a

"normal form" theorem for incidence matrices. Note that
det(A) = :1 since the total space is a disk, hence acyclic.
Using C2‘, we may assume that each of the first row entries
of A is positive. By repeated application of the division
algorithm, we can reduce the sizes of the (l,l)- and (1,2)-
entries of A until one of them becomes O, mirroring the
division algorithm on the matrix level at each stage
by Cl‘.

' In this manner, we can arrange for all but one of the
first row elements of A to be zero. The remaining element

must be 1, since det(A) = :1. Repeating this for each row,

and using C3‘, we can transform A to the nxn identity
matrix, In. Then using Cl’, each element of the (n+l)§E
column can be replaced with zero. This produces
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Theorem 5.1: Let (Dn+2,fDn) be a disk pair having a handle

presentation consisting entirely of 1- and 2-handles. ‘

Using the six handle moves Rl,R2,R3,Cl',C2', and C3‘,
the handle presentation can be adjusted so that the augmented

incidence matrix is of the form [I Q]

In Chapter U, we will examine some applications of this
theorem.
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IV. APPLICATIONS

§l. Knots Which Are Uniquely Determined
By Their Exteriors

A knot, K1 = (Sn+2,flSn), is uniquely determined by

its exterior if, whenever the exterior of Kl is diffeo-
morphic to the exterior of the knot K2 = (Sn+2,f2Sn),
then Kl is equivalent to K2. Browder [l] has shown that
for n22, there are at most two distinct knots with diffeo-
morphic exteriors. Certain classes of knots are known to
be uniquely determined by their exteriors (Gluck [6],
Cappell [2], Levine [l@, and Kearton [l). With the aid
of Theorem lII.5.l, an argument of Sumners [7] yields
another class of knots which are uniquely determined by

their exteriors.

Theorem l.l (Hitt and Sumners [7]): Let (Dn+3,fDn+l) be

a disk pair having a handle presentation composed entirely
of 1- and 2—handles. If n22, then the sphere pair
(8Dn+3,f(3Dn+1)) is uniquely determined by its exterior.

The theorem is proven by constructing a diffeomorphism
of pairs between the two possible sphere pairs which have

the same exterior. The diffeomorphism is constructed in
/\ stages at the disk pair level: first, the diffeomorphism

85]
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representing the nontrivial element of nl(SO) from the
unknotted disk pair to unknotted disk pair is extended
over the l-handles in the handle presentation; then it
is extended over the 2-handles. However, there is an ob-
struction to the extension over the 2—handles; namely, the
mod(2) number of times the attaching spheres of the 24rumles

go around the submanifold. But Theorem III.5.l shows that
for any such given disk pair, we can change the handle
decomposition such that the obstruction vanishes, thus
allowing the diffeomorphism of pairs to be completed.

Rephrasing Theorem l.l in our terminology, we have

Corollary 5.2: If n22, any weak ribbon n-knot is uniquely
determined by its exterior.

Proof: Immediate, from the definition of weak ribbon knot.U

Corollary 5.3: For n22, ribbon n-knots are uniquely
determined by their exteriors.

Proof: Ribbon n-knots are weak ribbon n-knots.U
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§2. Another Proof of Theorem III.3.2

Theorem III.5.l can also be used to give a different
proof of Theorem III.3.2. Instead of constructing a ribbon
immersed disk which bounds the knot, a semi-unknotted mani-
fold which bounds the knot can be constructed by a method

of Omae [2@. We will sketch the proof for the
(Dn+3,Dn+l) u hl u h2 case. For more than a single pair
of such handles, the proof is completely analogous.

Let B be the oriented (n+1)-disk constructed in the
proof of Theorem.£UQ3J2suchthat3B = 8Dn+l and B c 8Dn+3.

As before, we may assume the attaching sphere of-h2 inter-
sects B transversely at a finite number of points. Each

point of intersection has an incidence number, either +1

or -1. Now, by Theorem III.5.l, we may assume (without loss
of generality) that the sum of the incidence numbers is
zero. So, there must be an even number of such points, say

x1,x2,...,x2k.
Suppose, for the moment, that there are only two points

of intersection. Then we can form a manifold, M, in
8[Dn+3 u hl u h2] by piping B to itself along the subarc

x1x2 of the attaching sphere of h2. M is orientable, since
the incidence numbers at X1 and X2 disagree. The boundary

of the piping tube is a disjointxuxnloftwo n-spheres. These

spheres are unlinkedin 8[Dn+3 u hl u h2]. This is because
' »
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the attaching sphere of h2 is isotopic to once around hl,
and disjoint discs in 8[Dn+2 u hl u h2] can be obtained
which bound the spheres as in the proof of Theorem III.3.2.
This shows that M has a trivial system of n-spheres, hence

is semi—unknotted.
Inductively, assume the piping can be done to obtain

a semi-unknotted manifold in 8[Dn+3 u hl u n2] whenever

there are 2m-2 intersection points with total incidence
zero. Suppose that there are 2m intersection points with
total incidence zero in a disk pair. The orientation of
the attaching sphere of h2 induces a cyclic ordering on the
points. We may choose two adjacent points whose incidence
numbers disagree, and pipe these together so that the pipe
passes through no other intersection points. This leaves
2m-2 points whose total incidence is zero, and they can be

piped together by assumption. So if we use a thick pipe
between the first two points, and successively thinner pipes
for the other 2k—2 points, the two can be done together
without interfering. Again, a check shows the resulting
manifold is semi-unknotted (see Figure l).
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§3. An Example

The purpose of this section is to apply the handle
calculus, developed in Chapter III, to modify a given handle
presentation. In Chapter II, we calculated a handle pre-
sentation for a disk pair which bounds the knot 9M6 (see
Figure II.l3). Sumners [an also has a handle presentation
for a disk pair which bounds 9H6 (see Figure II.lU). Using
the handle calculus, we will show that the two disk pairs
are diffeomorphic.

We begin with the Sumners presentation in Figure 3(a).
The framing, or product structure, used on the 2-handle by

Sumners to obtain 9M6 on the boundary is such that if the
attaching sphere of the 2-handle is ambiently isotoped to
once around the l-handle, a push-off of the attaching sphere

appears as indicated in Figure 2.

l-handle
/-—§\/ ‘\/ ‘\ attaching sphereI for 2-handle

\
I |
\\ /L\\push-off of, attaching sphere\ /\~______,

,’” Figure 2
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In Figure 3(b), a cancelling pair of l-, 2-handles has

been added. Here, there are infinite cyclic many different
framings which could be used, but we choose the one indi-
cated in Figure 2.

If we slide the right l-handle over the left l-handle,
we obtain (c). The idea is to use the Adding Lemma until
we are in a position to cancel the original two handles.
First, we replace the original 2-handle, by itself plus the
new one. Again, there are infinite cyclic many ways to
frame the piping arc. We choose the one illustrated in (d),
which is obtained using the product structure on the l-handle,
as in §III.4. Figure (e) is a re-drawing of (d).

We want to eventually cancel the original 1- and 2-

handles. This can be accomplished by the methods used in
§III.U for the column operations, and is indicated in (f).
Care must be exercised to ensure that the correct push-offs
are used. Then the original l- and 2-handles are in can-

celling position, and we cancel them in (g). Re-drawing

(g), we obtain (h), which is the handle presentation ob-

tained in Chapter II for the knot 9M6.
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/\l_ §A. Homological Torsion in the Infinite Cyclic Coverings
of Knot Exteriors.

>

The purpose of this section is to examine the rami-
fications of torsion in a homology group of the infinite
cyclic covering of a slice knot on the handle structure of
a null—cobordism of the slice knot. This is done in Theorem

H.3. An application of the theorem is given in §5.

Let A be an R+module. We say xeA is a torsion element
(or, has R-torsion), if there is some reR, r¢O, such that
r-x=O. If XeA is not a torsion element, it is torsion free
(R-torsion free). Also, if each element of A is a torsion
element, A is called a torsion R-module; and, if each element
of A is torsion free, A is called torsion free../\

To facilitate the proof of the theorem, we use the
following lemma, the proof of which is a generalization of
an argument due to Sumners B3].

Lemma H.l: Let K be a finite CW complex of dimension n, and

suppose there is dn epimorphism ¢:nl(K)——+Z. Let K denote
the infinite cyclic covering of K corresponding to ¢.

(i) If Hn(K;Q) = 0, then Hn(K;Z) = O; also,
‘ (ii) If Hn(;Z) = O = Hn_l(K;Z), then Hn_l(K;§) is

Z-torsion free.

. Proof: (i) Let t be a generator of the infinite cycliciii.-
group of covering transformations, and let F = Q[t,t_l]

,l (the rational group ring of the group of covering trans-A
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formations). Following Milnor EHJ and Levine [IU, the
rational chain groups Cq(K;Q) are then finitely generated
over F, the generators being in one-to-one correspondence
with the q-cells of K. Since F is Noetherian, the homology

l\IH*(K;Q) is a finitely generated F module. But in fact, F

is a principal ideal domain, so we have the decomposition
theory of finitely generated modules over principal ideal
domains to aid in the analysis.

As in Milnor EHJ, consider the short exact sequence of
F-modules

(t—l) ‘ 1

0-i.-+c,.<;Q>—-———»c,.<K;Q>———>0,.<K;Q>———->0
~ where the homomorphism (t—l) is P-module multiplication.

,i This gives rise to a long exact sequence of homology, part
of which is

(1:-1)
0———-»Hn<;Q>---—‘1->Hn<1?;Q>——->Hn<K;Q>————-»

By assumption, Hn(K;Q) = O, so (t-l)n is an epimorphism (in
fact, an isomorphism). But then t-1 e F divides any element
in Hn(§;Q). By the theory of finitely generated modules over

mo '

a principal ideal domain, Hn(K;Q) is a direct sum of cyclic
F-modules of the form P/(a), where (a) is the ideal
generated by aer. Since t—l divides each element of Hn(R;Q),

IQnone of the direct summands can be free. Thus Hn(K;Q) is a

torsion F-module. V

On the other hand, since Cn+1(;Q) = O, Hn(K;Q)==Zh@§Q),

the module of n-cycles. And since P is a principal ideal
~’*, domain, Zn(K;Q) is free, being a submodule of the free
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P—module Cn(§;Q). Thus Hn(K;Q) is free over F. This forces
l\IHn(K;Q) = O, since it is both free and torsion.
By the universal coefficient theorem, we have

&) 7% &l f\lHn(K;Q) — Hn(K;Z) ®Z Q ¢ Tor(Hn_l(K;Z), Q), SO that
O = Hn(K;Z) oz Q. Thus Hn(;Z) is a torsion Z-module. But
as before,_Hn(§;Z) is also a free Z-module, since '

Hn(K;Z) = Zn(K;Z) c Cn+l(K;Z).
Thus Hn+l(K;Z) - O.

(ii) Let A = z[t,t'1], the integral group ring of the
covering transformation group, and let Tn_l denote the
A-submodule of Hn_1(;Z) consisting of all Zétorsion elements
(since all the chain and homology groups in this part of the
proof are with Z coefficients, we will dispense with the
coefficient designation from here on).

As in part (i), we have the short exact sequence of
A-modules

(t-1)o_--»c*<1<)-_--»c,,<1<> -—»c,,<1<>--+0
inducing a long exact sequence on homology:

...——————+Hn_l(K)—————-+Hn_1(K)-—————+Hn_l(K)-—————+.,.

By assumption, Hn_l(K) = O, so (t-l)n_l is an epimorphism.
Lemma II.8 in Kervaire [BU says that whenever (t-1)q is
an epimorphism, Tq is a finite group. So Tn_l is a finite
A-module. Now, multiplication by t induces an automorphism
on the finite group Tn_l, so there is some p:>O such that
tp is the identity automorphism.
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Let Kg denote the p—fold cyclic covering of K. From

Shinohara and Sumners [3, there is a long exact sequence
relating the homology groups of Kp to those of K,

rw 3 cw (tp_“n-1 rw... —-—>Hn(K)———->Hn(Kp)———+Hn_l(K) ——-——+Hn__l(_K) —-——+Hn__l(Kp)--—->

Now, Tn_l t ker(tp-l)n_l = im(8). But Hn(K) = 0 by

assumption, so Hn(Kp) 3 im(8). Thus Tn_l is embedded as

a submodule of Hn(Kp). Since Kp has dimension n though,
f§!Hn(Kp) is a free Z-module. Thus Tn_l = O, i.e., Hn_l(K)

is Z-torsion free. U

Let (sn+2,rsn) be a knot, and X the exterior of the
knot. Since X is a compact (n+2)-manifold with non-empty
boundary, it can be collapsed away from the boundary onto_

I\l
Ta finite (n+1)-complex K. u€t K denote the infinite cyclic

covering of K corresponding to the Hurewicz homomorphism

¢:wl(K) H1(K) (=Z). Since K is a homology S1,

Hn+l(K;Q) = O = Hn(K;Z) if n>l, so the preceeding lemma

applies to prove the following corollary. For n=l, an

analogous argument can still be used to give the

Corollary 4.2: If X is the exterior of an n-knot (nzl), and
K its infinite cyclic cover, then Hn+l(K;Z) = O and

I\lHn(X;Z) is Z-torsion free.

Using Lemma N.l, we can prove the main theorem.
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Theorem 4.3: Let" K = (Sn+2,fSn) be a slice knot,
(Sn+2XI,wn+l) a cobordism from K to the unknot, v(w) a

tubular neighborhood of w in Sn+2XI, and

W = cl(Sn+2XI-v(w)). Also, Zet X denote the exterior of K,

and E its infinite cyoZie covering. If Hq(i) has torsion
then any handle decomposition of W from the unknotted end

has either a(q+2)-or an (n-q+2)—handZe.

Proof: We prove the contrapositive of the theorem. Assume

the cobordism is parameterized so that the O-level is the
unknotted end, and let U = W n (Sn+2XO), the exterior
of the unknot. Without loss of gererality, we may assume

X = W n (Sn+1xl). Suppose the negation of the conclusion,
i.e., that there is some handle decompositon of W of the
form

w = UXI U {mg 1 1 s 1 1 n+2, 1 ¢ q+2, 1 ¢ n—q+2, jeAi}
where for each i, Ai is a finite indexing set.

Since handles are simply connected, they lift to any

covering space to induce a handle structure, so
... ,_, i
w = UXI U {ha |1 = q+2, 1 ¢ n-q+2, deBi}

where for each i, Bi is an infinite indexing set disjoint
from Ai. Let

wq+l = UXI U {hl 1 1 s q+l} and

~ ~ 1wq+l = UXI U {nu | 1 s q+1}

The contrapositive will be proven by applying lemma H.1 to
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Wq+l to show Hq(Wq+l) is torsion free, and deducing
I\lHq(X) is torsion free from that.

To apply Lemma .l, note that Wq+l is homotopy equiva-A
lent to a finite (q+l)-dimensional CW complex, say L.
Furthermore, since W is obtained from Wq+l by adding handles
of index greater than q+2, we have Hm(W) = Hm(Wq+l)_ for
m s q+l, the isomorphism being inclusion induced. But W is
a homolo S1 and W =L so H (S1) 5 H (L) By thegy 3 3 * * '
universal coefficient theorem, H*(Sl;R) 3 H*(L;R) for any

f\Iring R. So Lemma H.l applies to show that Hq(L) is torsion
free, whence Hq(Wq+l) is also. But Hq(Wq+l) = Hq(W)

(same reason as in the base space W), so Hq(W) is torsion
free.

f\IConsider now the dual decomposition of W,

w = xxx U {ha i 1 = q+l, n-q+1},
where hi is the dual handle of hi. Since W is obtained
from xx; by attaching handles of index other than q+l,
Hq+l(W,§xI) = O. 'The long exact sequence of the pair
%I\l(W,X*I)

...-—————+H (W xxx)-—3——+Hq(xxI)-+33i—+Hq(W)---+...q+1 ’
then shows that the inclusion induced homorphism

I§I l\li*:Hq(XXI)-—+Hq(W)
is a monomorphism. Thus, Hq(§xI) must also be torsion
free. But XXI is homotopy equivalent to X, so Hq(X) is
torsion free, as desired. U
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In the next section, we examine an application of this
corollary.
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§5. Slice Knots

In 1962, Fox [5] posed the

Question: Is every (classical) slice knot a ribbon knot?

We will examine the question in higher dimensions.
Yajima [3§ has shown that Example 12 in [3] is an

example of a slice 2-knot which is not a "simply knotted
2-sphere". Since Yanagawa BO] has shown that the definition
of simply knotted 2-sphere is equivalent to that of ribbon
2-knot, this then is an example of a 2-knot which is slice,
but not ribbon. We will construct examples here of n-knots
which are slice, but not ribbon, for each n22. The

2-twist-spun trefoil will be used for these examples (see

Zeeman [#§), although Example l2 of Fox [3] works just as

well. In fact, R. Litherland reportedly has shown that the
two knots are equivalent.

Let K = (Sn+2,fSn) be an n-knot. Choose x e fSn.
Then x has an unknotted disk pair neighborhood (B2+2,B§).
The disk pair associated with the knot K is

x . 2(sn+2,rsn) - 1n1:(B’;+ ,B‘;).
To p-spin a knot, one p-spins its associated disk pair,
which is defined as follows: given a disk pair (Dn+2,gDn),

its p-spin is the sphere pair
(Sn+p+2,Gp(g)(Sn+p)) a((Dn+2,gDnxDp+l)).
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l-spinning a knot can be thought of as taking the

Cartesian product of the associated disk pair with S1, and

capping off the top and bottom with the unknotted disk pair
In this sense, then, the associated ball pair is being "spun

around S1. To n-twist-spin a knot, the associated ball
pair is twisted n full times during the 1-spinning (see

Zeeman [H, for a rigorous definition).
Let X denote the exterior of the 2-twist-spun trefoil,

and X its infinite cyclic cover. Zeeman [ shows that the

‘ 2-twist-spun trefoil is a fibered knot, with fiber the lens

space L(3,2). Since *wl(L(3,2)) 5 Z3, it follows that
nl(§) 5 Z3, so Hl(§) 5 Z3. Since any even-dimensional

"5 knot is slice (Kervaire), we can apply Corollary .U to
see that any handle decomposition of any null-cobordism of
the 2-twist-spun trefoil must have a 3-handle from the

unknotted end. By Theorem II.3.5, then, the 2-twist-spun
trefoil is a slice knot which is not a ribbon knot.

For dimensions larger than 2, we use the p-spin of the

2-twist-spun trefoil (pzl). We are aided by a theorem of
Sumners.

Theorem 5.1 (Sumners [3): Let X denote the exterior of a

knot, K, and Y the exterior of the p-spin of K. Then

~ Hi(2) if isp
Hi(Y) i ~ ~ . .Hi(X)eHi_p(X) lf 1>p.



/'\.

/\

Z1

. 103

Taking K~to be the 2-twist-spun trefoil, then, for
any p>l, we have

Hl?) E’ H165)

3 Z .
s 3

Theorem H.3 implies that any handle decomposition of
any null-cobordism of the p-spin of the 2-twist-spun tre-
foil has either a 3-handle or a (2+p-1+2)-handle from the
unknotted end, i.e., a 3-handle or a (p+3)-handle. Again,
Theorem II.3.5 shows that the knot cannot be a ribbon knot
This proves the

Theorem 5.2: For each n22, there is an n-knot which is a

slice knot, but not a ribbon knot.
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§6. An Unknotting Theorem

In this section, an unknotting theorem for ribbon
knots is proven. An unknotting theorem is a theorem which

gives necessary and sufficient conditions for a sphere pair
(Sn+2,kSn) to be unknotted. Papakyriakopoulos [23 in the
case n=l, Shaneson [3@ in the case n=3, Levine El in the
case nz, and Stallings [33, have the following:

Theorem 6.1: Let (Sn+2,fSn) be a sphere pair for n#2.

Then (Sn+2,fSn) is unknotted if and only if Sn+2-fSn = S

In fact, (Sn+2,fSn) is unknotted if and only if
ni(sn+2-rs“) E wi(Sl) for 1 5 [%(n+l)].

We will show that a ribbon n-knot (Sn+2,fSn), n#2, is
unknotted if and only if nl(Sn+2-fSn) 5 Z. Yanagawa

[FQ Theorem 2.2] has this result for n=2, but there is a

gap in the proof of Lemma 2.N, as pointed out by Suzuki in
[3@. At this time, the case n=2 still appears to be open.

Theorem 6.2 (Unknotting Theorem for Ribbon Knots): If
K = (sn+2,rs“) is a weak ribbon knot, n#2, and if X is the

exterior of K, then K is unknotted if and only if
wl(X) 5 Z.

Proof: If K is unknotted, then X=s1, so nl(X) Z z.

Conversely suppose nl(X) 5 Z. If n=l, the conclusion
is a special case of the more general theorem of
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Papakyriakopoulos E, so assume n23. Since K is a weak

ribbon knot, there is a cobordism (Sn+2XI,w),with exterior
W,between K and the unknot such that

W = UXI u {hillsism} u {hillsism},
where U is the exterior of the unknot. Thus, W is homotopy

equivalent to a 2-dimensional CW-complex. Dually, we have

w = XXI U {h2+lIlsism} U {h§+2l1s1sm},
so that wi(X) E wi(W) for i<n. Thus wl(W) 3 wl(X) 3 Z,

since n23. This shows that the infinite cyclic cover,
W,of W is simply connected. Now, W is a homology S1, so

&I I\J
Lemma 3.l(i) implies that H2(W) = O. But since W is two-
dimensional, Hi(W) = O for izl, so W is contractible.
Thus wi(W) E wi(Sl) for each i, and hence W = S1. The

conclusion now follows from the Shaneson-Levine unknotting
theorem.D

As a corollary to the proof, we have

Corollary 6.3: If Y is a homology S1 which is homotopy

equivalent to a finite 2-dimensional CW complex, and if
w1(Y) E z, then Y = sl.

Assume the hypotheses of the above theorem. If
in the proof of the theorem, we cap off the cobordism
(Sn+2I,w) at the unknotted end with the unknotted disk pair,
we obtain a disk pair (Dn+3,f'Dn+1) with the following
properties: S
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(i) n+1 2 M;

(ii) the exterior, E, of the disk pair is homotopy

equivalent to S1; and

(iii) wl(8E) E nl(E).
Van Kampen's theorem shows that wl(E) 5 Z, so (ii)

follows from the corollary. Also, nl(8E) = nl(X) 3 Z, so

(iii) is true.
We want to apply the following theorem due to Kato

[ll Cor. H.7]:

Theorem 6.H: ‘Assume nz. Then an n-disk pair (Dn+2,gDn)

is unknotted if the exterior, E, is of the same homotopy

type as S1, and if wl(8E) 5 w1(E).

Thus, the disk pair (Dn+3,f'Dn+l) is unknOtt€d, which
shows that the cobordism (Sn+2XI,w) in the proof of
Theorem 5.2 is the product cobordism. This proves the

Corollary 6.5: Let n23. If K = (Sn+2,fSn) is a weak

ribbon knot such that wl(exterior of K) 5 Z, then any

null-oobordism of K built up with only l— and 2—handles

from the unknotted end is the product eobordism.

Corollary 6.6: Let n23. If (Dn+3,fDn+l) is a disk pair
having a handle presentation consisting of only 1- and

2-handles, and if wl(Dn+3-fDn+l) E Z, then (Dn+3,fDn+l)
is the unknotted disk pair.
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Appendix: RESEARCH PROBLEMS?

For the sake of convenience, we have collected several
of the questions raised in the dissertation, and augmented

the list with some related problems.

l. (a) From the definitions on page ll, is there a defini-
tion l ribbon knot which is not a definition 2 ribbon knot?
In particular, is the 2-twist-spun trefoil a definition l
ribbon knot? If it does bound an immersed disk in S”, what

are the singularities?
/* (b) Given any slice n-knot, it bounds an (n+1)-disk

in Sn+2XI. Can this disk be pushed down into Sn+2XO

to yield an immersed disk which bounds the knot? If so,

perhaps a hierarchy of slice knots could be established,
depending on the types of singularities of the immersed

disk. This hierarchy might translate into a heirarchy of
handle decompositions of null-cobordisms of these slice
knots, as was the case for ribbon knots in this dissertation

2. (a) Is every Seifert manifold of a ribbon n-knot
ambient isotopic to one in the form of Theorem I.3.l
(page 25)?

(b) Given a classical ribbon knot, is there a Seifert
surface in the form of Theorem 1.3.1 whose genus is minimal

107
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among all Seifert surfaces?

3. Following the definition of semi-unknotted manifolds
on page 26, it was remarked that for any semi-unknotted
manifold Mn+l c Sn+2, M 5 #(SlXSn) - B, where B is
an embedded (n+l)-disk in #(SlXSn).

(a) Is there an (n+l)-manifold of this form in Sn+2

which is not semi-unknotted?
(b) Is there a non—ribbon n-knot which has a Seifert

manifold diffeomorphic to #(snxs1) - B?

H. Concerning the Sumners handle presentation for the
exterior of the classical knot 9H6 (Figure II.lU), if the

/~ tubular neighborhood of the submanifold is re-inserted with
a "twist" using a non-trivial element of nl(SO(2)), it is
possible to obtain homotopy H-disks like the Mazur manifold.
With the handle presentation shown in Figure II.l3, when

the submanifold is re-inserted, it is not clear if the
resulting N-manifold is a disk or not. Perhaps a handle
presentation of a disk pair can be found so that when the
submanifold is replaced with a twist, a different disk pair
results. This would produce 2 classical knots with the same

complement.

5. Given a ribbon n-knot which is a fusion of a trivial
link of m components, there are m ways to construct a

cobordism to the unknot using the method of §II.3, depending
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on which n-sphere plays the role of the unknot. Are these
cobordisms distinct?

6. (a) Given different presentations of the same ribbon
knot as fusions of trivial links, are the ribbon disk pairs
constructed using the methods of §II.3 different?

(b) Is it possible to have different ribbon disks which
bound equivalent knots? All the ribbon disks which bound

the unknot of dimension n (n23) are equivalent by Corollary
IV.6.6.

7. (a) Can any handle presentation of a disk pair,con-
sisting entirely of 1- and 2-handles,be changed to a special
cancelling pair one using the handle moves (see page 62)?

(b)‘ If a knot bounds such a disk pair, is it necessarily
a ribbon knot? A negative answer here would show that there
are slice knots which are not ribbon knots.

(c) A classical knot, K = (S3,fSl), is a homotopy

ribbon knot if there is a cobordism (S3XI,w) of K to the

unknot such that wl(S3-fSl)++w1(S3XI-w) (the inclusion
induced homomorphism) is onto. We then have the following
set containments for classical knots:
{ribbon} C {weak ribbon} c {homotopy ribbon} ¢ {slice} .

Which inclusions, if any, are proper?

8. From Theorem IV.4.3, we know that given a slice n-knot
/K with q-dimensional homological torsion in the infinite
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cyclic covering of its exterior, any handle decomposition
of any null cobordism of the knot has either a (q+2)- or
an (n-q+2)-handle from the unknotted end. Are there
examples where there is a (q+2)-handle but not an (n-q+2)-
handle, and where there is an (n-q+2)-handle but not a

(q+2)-handle?

9. A simple knot is a knot K = (S2n+l,fS2n_l)i such that
wi(exterior of K) 5 wi(Sl) for isn. For a given simple A

knot, K, let A be a Seifert matrix for K. Kervaire [l]
shows how to construct a simple (2n-l)—knot, K‘, with A

as its Seifert matrix. In the construction,
A K‘ = 8(D2n U {h§_‘s1sis2J.})./\

X

Levine [16] has shown that higher dimensional simple knots

are classified by their Seifert matrices, so K and K‘ are

equivalent. Is there a way to construct a cobordism from

K’ to the unknot from the Seifert manifold D2n u {hg} in
the same way a null cobrodism was constructed in Chapter II
from the Seifert manifolds of §I.3? If so, what is the
handle structure of such a cobordism?

-\

10. Kato [ll] shows that there are two distinct disk pairs
which have the same exterior. Are there more than two

distinct disk pairs which have the same exterior?

ll. Given a disk pair (Dn+3,fDn+l) having a handle pre-
sentation consisting of l- and 2-handles, for n=l it is
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known that wl(exterior) does not classify the pair. For
example, Sumners [33] gives two disk pairs which have the
same groups, but which bound distinct knots. These examples

are obtained by changing the framing on the attaching set
of a 2-handle in a handle presentation. What happens in
higher dimensions? Is the framing a red-herring, or are
different disk pairs produced there, too? Can higher
dimensional (weak) ribbon knots be classified by W1?

l2. Can the handle structure of the exterior of a knot be

related to the handle structure of the exterior of the p-
spin of the knot? To the n-twist-spin of the knot?
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